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Abstract 

A viral disease ZIKAV (Zika virus) caused by a type of a Flavivirus 
closely related to dengue is primarily transmitted to humans by the 
bites of infected mosquitoes from the Aedes aegypti. Seeking to 
understand the dynamics of spread of the ZIKAV disease, we propose 

321 VVSEIIJRV  mathematical models for vector transmission of the 

virus, sexual contact transmission, isolation, and conducted stability 
analysis. Isolation is one of the ways to disease control. This isolation 
is done on symptomatic-infected human population to prevent the 
spread of the disease. We calculate the basic reproduction number 0R  

and show that for ,10 <R  the disease-free equilibrium is locally 

asymtotically stable. In addition, it is shown that for a special case 
when ,10 >R  the endemic equilibrium is locally asymptotically 

stable. Numerical simulations are shown to support the analytical 
results and allow us to have a clear view of the effect of isolation. 
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1. Introduction 

Zika virus was first isolated in Rhesus monkey in Uganda in 1947 [3]. In 
1950, the virus had become epidemic in many countries of Africa, Southeast 
Asia, and the Pacific Islands [6]. Zika virus is very harmful to the developing 
fetus in pregnant women, because if the virus attacks pregnant women, it can 
cause brain development in the fetus which becomes abnormal, miscarriage, 
and microcephaly [12]. 

Zika virus is spread to humans through mosquito bites and sexual 
transmission. The other modes of the transmission are blood transfusions and 
perinatal transmission (transmission of the disease from mother to baby 
during pregnancy, birth or breastfeeding). Zika virus can be spread by a man 
to his sexual partners. In some case, sexual transmission may occur through 
people who have symptoms of the Zika virus disease [4]. The most common 
symptoms of the Zika virus disease are fever, rash, joint pain, conjunctivitis 
(red eyes), and disorders of the nervous system, including Guillain-Barre 
syndrome (GBS). However, there is not a vaccine or specific treatment to 
prevent and treat viral diseases [1]. 

Many researchers have developed a mathematical model and analysis 
regarding the transmission of Zika virus disease. For instance, Moreno et al. 
[8] formulated a compartmental model for Zika virus with two patch model, 
Kucharski et al. [7] described and analyzed transmission dynamics of Zika 
virus in French Polynesia, and Gao et al. [5] showed the prevention and 
control of Zika as a mosquito-Borne and sexually transmitted disease to a 
mathematical model. In this paper, we modify and analyze a disease from 
Zika virus spread model with two groups of infected population that was 
introduced by Moreno et al. [8] and sexually transmitted disease was created 
by Onuorah Martis et al. [10]. Modification of the model is done by adding J 
compartement [9], namely isolated population, so that this model is called 

321 VVSEIIJRV  model. Modifications are done by considering the assumption 

that symptomatic-infected individual can move into isolated population and  
it is assumed that individual who has been recovered cannot be re-infected by 
Zika virus. 
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The paper is organized into five sections. Section 1 describes the 
background and purpose of this paper. Section 2 describes the formulation of 
the model used. Section 3 describes the model analysis. Section 4 performs 
the numerical analysis. The conclusions are provided in Section 5. 

2. Model Formulation 

In this section, we develop a deterministic mathematical model for           
the dynamics of ZIKAV and introduce the modification of ZIKAV spread 
model through the isolation of two groups of infected population. Our model 
incorporate vital dynamic for both the human and vector compartements.        
We coupled an SEIIJR for the human to SEI for the vector population. 
Specfically, ( ),tS  ( ),tE  ( ),tIa  ( ),tIs  ( ),tJ  ( )tR  represent the susceptible, 

exposed, asymptomatic and symptomatic infected, isolated and recovered 
humans, respectively. While ( ),1 tV  ( ),2 tV  ( )tV3  represent the susceptible, 

exposed and infected mosquitoes, respectively. 

As with any modeling endeavor, various assumptions about the 
underlying must be made. At this stage, we explain clearly for the 
assumptions of this model. The total of human population is constant. The 
birth rate and natural mortality rate are denoted by .1μ  New infections result 

from sexual contacts between susceptible and infected individuals with an 
incidence rate .2α  Then susceptible human becomes medically exposed to 

ZIKAV. It can also occur when they receive a bite from a mosquito that is 
already inducted with rate .1α  Proportion of symptomatic and asymtomatic 

infections are ω and ( ).1 ω−  The rate at which the exposed humans move to 

the infectious compartment sI  is ,1σ  this is done when the individual shows 

the symptom of Zika virus disease. Isolation is done to prevent contact with 
mosquitoes and avoiding sexual contact between symptomatic-infected and 
susceptible human beings. Furthermore, the isolated patient who infected by 
ZIKAV disease will be given by special treatment with the isolation rate ρ. 
Isolated human moves to the recovered compartment R at the rate γ. 
Asymptomatic and symptomatic infected human beings can move to the 
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recovered compartment R at the rate of aγ  and ,sγ  respectively. Recovered 

individuals did not go back to the susceptible class because the ZIKAV 
confers life time immunity to them. The susceptible mosquito populations 1V  

is recruited via birth at the rate .2μ  A portion of this human population 

becomes infected at the rate 21βα  when they bite an individual having 

ZIKAV disease and thus move to the exposed compartement .2V  When the 

exposed mosquitoes developed ZIKAV symptoms, they move to the infected 
compartment 3V  at the rate .2σ  Every mosquito population is affected by the 

natural death at the rate .2μ  Based on our assumptions and the transfer 

diagram, we can derive the following system of differential equations that 
govern our model 
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with ( ) ,00 ≥S  ( ) ,00 ≥E  ( ) ,00 ≥aI  ( ) ,00 ≥sI  ( ) ,00 ≥J  ( ) ,00 ≥R  

( ) ,001 ≥V  ( ) ,002 ≥V  and ( ) .003 ≥V  

We can normalize our equation (1) by introducing the new variables: 

,
hN

Ss =  ,
hN

Ee =  ,
h
a

a N
Ii =  ,

h
s

s N
Ii =  ,

hN
Jj =  ,

hN
Rr =  ,1

1
vN

Vv =  

,2
2

vN
Vv =  .3

3
vN

Vv =  Then we use jiiesr sa −−−−−= 1  and =1v  

.1 32 vv −−  This creates a new seven-dimensional system of equation 

,123111 ssisvdt
ds

s μ−α−βα−μ=  

( ) ( ) ,112311 esisvdt
de

s μ+σ−α+βαω=  

( ) ( ) ( ) ,1 12311 aas
a isisvdt

di
μ+γ−α+βαω−=  

( ) ,11 ss
s iedt

di
μ+ρ+γ−σ=  

( ) ,1 jidt
dj

s γ+μ−ρ=  

( ) ( ) ,1 2223221
2 vvvidt

dv
s μ+σ−−−βα=  

.3222
3 vvdt

dv
μ−σ=  (2) 

Then we determine the existence of equilibrium points; computing the 
effective basic reproduction number, and establishing the conditions for 
stability of the equilibria points. 

Lemma 1. Let the initial data set be ( ) ,00 ≥s  ( ) ,00 ≥e  ( ) ,00 ≥ai  

( ) ,00 ≥si  ( ) ,00 ≥j  ( ) 002 ≥v  and ( ) .003 ≥v  Then the solution set 

{ }( )tvvjiies sa 32,,,,,,  is positive for all time .0>t  
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3. Model Analysis 

The disease-free equilibrium of the system (1) is given by 
( ) ( )0,0,0,0,0,0,1,,,,,, 320 =vvjiiesT sa  and the endemic equilibrium 

of the system (1) is given by 

( ) ( ),,,,,,,,,,,,, 3232
∗∗∗∗∗∗∗∗ = vvjiiesvvjiiesT sasa  

where 
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We calculated the basic reproduction number using by the next 
generation operator approach by van den Driessche and Watmough [11]. The 
next generation matrix at the disease-free equilibrium 0T  is given by: 
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The basic reproduction number 0R  is dominant eigenvalue of ,1−FV  

thus we get 

 ( )21
0

2
0

1
00 42

1
2
1

RRRR ++=  (4) 

with 
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The stability of system (1) is dependent on the basic reproduction 

number .0R  The stability analysis of both the equilibrium 0T  and ∗T  will be 

provided through the following theorems. 

Lemma 2. For system (1), the disease-free equilibrium 0T  exists. 

Moreover, endemic equilibrium ∗T  is unique and positive if and only if 
.10 >R  

Theorem 1. The disease-free equilibrium 0T  is locally asymtotically 

stable if .10 <R  

Proof. The Jacobian matrix at 0T  for system (1) is given by 
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The characteristic polynomial of the matrix 0TJ  is 
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with 

,022 21211 >σ+σ+ρ+μ+μ+γ= sa  

( )( ) ( ) ( )( ) ( )2221112222 μ+σμ+μ+σ+μ+ρ+γμ+σ+μ= sa  

( ) ( ) ( ),1 1
0111 R−μ+σμ+ρ+γ+ s  
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( ) ( ) ( )( ) ( ),1 1
0112221 R−μ+σμ+μ+σμ+ρ+γ+ s  

( ) ( ) ( ) ( ).1 2
0

1
02211124 RR +−μ+σμ+σμ+ρ+γμ= sa  

We have three negative eigenvalues: ,01111 <μ−==λ J  ==λ 332 J  

01 <μ−γ− a  and .01553 <μ−γ−==λ J  While 654 ,, λλλ  and 7λ  can 

be obtained by solving the equation below: 

 .043
2

2
3

1
4 =+λ+λ+λ+λ aaaa  (5) 

Based on Routh-Hurwitz criteria, characteristic equation (5) for fixed 
point 0T  is stable, if it is eligible for the following conditions: 

 ( ).,,0,0,0,0 4
2
1

2
33213214321 aaaaaaaaaaaaa +>>>>>>  (6) 

Because all parameters are positive, .01 >a  Thereafter, while ,10 <R  

2a  and 3a  are positive. Afterward, 4a  will be positive or negative, it 

depends with .0R  If ,10 <R  then there are equations as follow: 

Let .11
0 <R  Because ,02

0 >R  ,12
0

1
0 <− RR  and hence .04 >a  Based 

on ,10 <R  ,04 >a  and the value of parameters at numerical simulation is 

obtained from ,321 aaa >  and ( ).4
2
1

2
3321 aaaaaa +>  Thus, for ,10 <R  (6) 

holds. 

As a result, the disease-free equilibrium 0T  for system (1) is locally 

asymptotically stable if .10 <R  

(
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Theorem 2. If ,10 >R  then the endemic equilibrium ∗T  is locally 

asymptotically stable. 

Proof. The proof is based on Castillo-Chaves and Song [2]. Let 1β=ϕ  

be the bifurcation parameter and ,1 sx =  ,2 ex =  ,3 aix =  ,4 six =  ,5 jx =  

=6x  ., 372 vxv =  System (1) becomes 
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and disease-free equilibrium 0T  has one zero eigenvalue and seven       

negative eigenvalues. The zero eigenvalue has a right eigenvector 
( )7654321 ,,,,,, uuuuuuu  and a left eigenvector ( )7654321 ,,,,,, vvvvvvv  
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The values of a and b satisfies condition (iv) in [2]. When ϕ changes from 

negative ( )10 <ϕ<ϕ ∗ R  to positive ( ),10 >ϕ>ϕ ∗ R  the the disease-free 

equilibrium 0T  changes its stability from stable to unstable. Correspondingly, 

a negative unstable equilibrium ∗T  becomes positive and locally 
asymptomatically stable. So this achieves the proof that the endemic 

equilirium ∗T  is locally asymptotically stable if .10 >R  

4. Numerical Simulation 

Numerical solutions for the system are discussed in this section.          
We make several interesting observations by numerically simulating in the 
range of parameter values. The parameter values used in this simulation are 

,4.01 =β  ,5.02 =β  ,5.01 =α  ,00035.02 =α  ,00493.01 =μ  ,35.02 =μ  

,53.01 =σ  ,2.02 =σ  ,14286.0=γa  ,071428.0=γs  196429.0=γ  and 

.18.0=ω  

In the next discussion, our objectives were justify the stability properties 
of the equilibrium points based on the theorm in Section 3 and to see the 
influence of parameter variations. The dynamics of human populations and 
the the mosquitoes is observed when 10 <R  and .10 >R  In this case, 0R  is 

the basic reproduction number define in equation (4). The intial values used 
are ( ) ,6.00 =s  ( ) ,4.00 =e  ( ) ,00 =ai  ( ) ,00 =si  ( ) ,00 =j  ( ) 4.002 =v  and 

( ) .2.003 =v  

Suppose .10 <R  We set the parameter value for this simulation, so that 

the condition 183207.00 =R  is satisfied. It is found that there is a disease-

free equilibrium ( ) ( ).0,0,0,0,0,0,1,,,,,, 320 =vvjiiesT sa  Figure 1 shows 

that the curves s, e, ,ai  ,si  j, r, 2v  and 3v  asymptotically approaching the 

disease-free equilibrium point .0T  The simulation result are consistent with 

Theorem 1. These results indicate that if the parameters of the model are 
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setting to get ,10 <R  then the ZIKAV disease could be extinct because the 

population system will stable at a disease-free equilibrium point. 

 

 

Figure 1. Dynamics human population with condition .10 <R  

 

Figure 2. Dynamics mosquito population with condition .10 <R  
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Suppose .10 >R  We set the parameter values as ,25.02 =α  =μ2  

,028571.0  ,095238.02 =σ  and ,8.0=ω  so that the condition =0R  

355895.2  is satisfied. It is found that there is a endemic equilibrium point 

( ) ( )∗∗∗∗∗∗∗∗ = 3232 ,,,,,,,,,,,, vvjiiesvvjiiesT sasa  with ,235603.0=∗s  

,005635.0=∗e  ,0051.0=∗
ai  ,010808.0=∗

si  ,010735.0=∗j  ,019939.02 =∗v  

and .066465.03 =∗v  From Figures 3 and 4, simulation result are found to be 

consistent with Theorem 2. These results indicate that if the parameters of  
the model are setting to get ,10 >R  then the ZIKAV disease could be exist 

because the population system will stable at a endemic equilibrium point. 

 

 

Figure 3. Dynamics human population with condition .10 >R  
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Figure 4. Dynamics mosquito population with condition .10 >R  

Then, under ,10 >R  the sensitivity analysis is carried out to show which 

parameter gives more effect to 0R  when the disease is spreading. The result 

of this analysis is shown at Table 1. 

Tabel 1. Index sensitivity for 10 >R  

Parameter Index sensitivity ( )0R
pϒ   

1α  0.820508 

2α  0.179492 

1β  0.410254 

2β  0.410254 

1μ  –0.015956 

2μ  –0.504927 

aγ  0 

sγ  –0.152427 
ω 0.589746 
ρ –0.426799 

1σ  0.005435 

2σ  0.094673 
γ 0 

Table 1 explains that if 1α  increases or decreases by one unit, then 

increase or decrease in 0R  is by 0.820508 unit, and if ρ decreases or 
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increases by one unit, then increase or decrease in 0R  is by 0.426799 unit. 

From sensitivity analysis, we got some influential parameters which are 
ωμββα ,,,, 2211  and .ρ  

Furthermore, the effect of parameters variation to human beings infected 
is shown in the following Figure 5. We vary the isolation rate. The human 
populations illustrated in Figure 5 show that if isolation rate ( )ρ  is increased 

and the other values of parameters remain constant, then it causes reduction 
in number of the asymptomatic infected population and the symptomatic 
infected population. Similarly, if isolation rate ( )ρ  decreases until zero, then 

the asymptomatic infected population, and the symptomatic infected 
population increase. The following Figure 5 is about the effect of isolation 
rate. 

 

Figure 5. Dynamics human population due to the influence of isolation rate. 

5. Conclusions 

The model discussed in this study is a modification of the existing model 
where there is an additional assumption concerning isolation with two 
infected populations and sexual transmission. Analysis of this dynamic 
system shows that there are two equilibria, namely, disease-free equilibrium 
and endemic equilibrium. Moreover, the disease-free equilibrium of system 
is locally asymptotically stable if and only if .10 <R  The endemic 



Syifa N. Ainisa, Jaharuddin and Endar H. Nugrahani 2626 

equilibrium is positive and locally asymptotically stable if .10 >R  The 

simulation results show that if the isolation rate increases, then 0R  will 

decrease, but decreasing 0R  value can only bring down the spread of ZIKAV 

disease. 
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