PROCEEDING

International Seminar on Tropical Horticulture

-2016

"The Future of Tropical Horticulture"

Organized by

ISBN 978-979-18361-5-9

Proceeding International Seminar on Tropical Horticulture 2016 : *The Future of Tropical Horticulture*

ISBN: 978-979-18361-5-9

Editor :

Dr. Awang Maharijaya, SP, M.Si Dr. Ir. Darda Efendi, M.Si

Layout and Cover Design : Ferdhi Isnan Nuryana, SP

Publisher :

Pusat Kajian Hortikultura Tropika (PKHT) - LPPM IPB

Editorial:

Pusat Kajian Hortikultura Tropika (PKHT) Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM) Institut Pertanian Bogor (IPB) Kampus IPB Baranangsiang, JI Raya Pajajaran, Bogor 16144 Telp. (0251) 8326881; Fax. (0251) 8326881

First Edition, May 2017

All rights reserved

No part of this proceeding may be reproduced in any written, electronic, recording, or photocopying without written permission of the publisher or author. The exception would be in the case of brief quotations embodied in the critical articles or reviews and pages where permission is specifically granted by the publisher or author.

Copyright © 2017

FOREWORD

The International Seminar on Tropical Horticulture 2016 was held in IPB International Convention Center, Bogor, Indonesia 28 – 29 November 2016. This seminar was organized by Center of Excellence for Tropical Horticulture Studies (PKHT), Center of Excellence in University (PUI-PT), Bogor Agricultural University (IPB), and supported by an excellent collaboration with International Tropical Fruits Network (TF Net).

We're very glad to know the fact that the seminar displayed a very wide discussion about tropical horticulture with delegates from 5 countries (Taiwan, Thailand, Malaysia, Japan and Indonesia) as keynote speech and participants. 24 papers were selected to be included in this proceeding from 28 oral and 31 poster presentation.

This proceeding is contained of three sub chapter, that is fruits, vegetables and miscellaneous. There are 9 papers of fruits chapter, 12 papers of vegetables chapter and 3 papers of miscellaneous chapter. We wish to thank Sanjeet Kumar, Ph.D, Prof. Sobir, Prof Masayoshi Shigyo, Dr. Mohd Desa Haji Hassim, Parson Saradhuldhat, Ph.D for being keynote speech at this international seminar and all participants for very lively atmosphere during and after the seminar.

Bogor, May 2017

Editor

Dr. Darda Efendi Dr. Awang Maharijaya

SYMPOSIUM PROGRAM

28 November 2016

07.30 - 09.00	Registration desk open and morning coffee
09.00 - 09.30	Welcome addresses
	Dr. Darda Efendi , Director of Center for Tropical Horticulture Studies, Indonesia
	Prof. Herry Suhardiyanto, Rector of Bogor Agricultural University, Indonesia
09.30 - 12.00 (20 minutes	Session 1: Introductory Topics
presentation + 10 minutes discussion)	Dr. Sanjeet Kumar, World Vegetable Center, Taiwan "Science and Art of Tropical Horticulture: Stories, Impacts and Prospects"
	Prof. Sobir, Indonesian Center of Excellence for Tropical Horticulture <i>"Tropical Horticulture: Past, Present and Future"</i>
	Gregori Hambali, MSc, Mekarsari, Indonesia
12.00 12.00	"Managing Tropical Fruit Collection"
12.00 - 13.00	Lunch
13.00 – 14.30 (20 minutes	Session 2: Opportunity in Tropical Horticulture Industry
presentation + 10	Brof Muhammad Firdaus Regar Agricultural University
minutes discussion)	Prof. Muhammad Firdaus, Bogor Agricultural University "Enhancing the Competitiveness of Tropical Horticulture Products"
	Dr. Mohd Desa Haji Hassim, International Tropical Fruit Network, Selangor, Malaysia
	"Issues and Challenges in The Global Tropical Fruit Market"
	Parson Saradhuldat, Ph.D, Department of Horticulture, Kasestsart University, Thailand
	"Tropical Horticulture Business in Thailand"
14.30 - 16.00 (20 minutes	Session 3: Quality of Horticultural Products
presentation + 10 minutes discussion)	Dr. Darda Efendi, Center for Tropical Horticulture Studies, Indonesia <i>"Quality Issues in Tropical Horticultural Products"</i>

Tatas H. P. Brotosudarmo, PhD , Ma Chung University "Non-optical and optical spectroscopy as metabolomics platforms for determining the quality of horticultural products"				
Dr. Irmanida Batubara, Tropical Biopharmaca Research Center " Quality Control on Herbal Medicine"				

29 November 2016

07.30 - 08.30	Registration desk open					
08.30 - 10.15	Parallel session 1	Parallel session 2				
10.15 - 10.30	Coffee Break and Poster Session					
10.30 - 12.15	Parallel session 3	Parallel session 4				
12.15 - 13.00	Lunch					
13.00 – 15.00 (@20 minutes presentation + 10 minutes discussion)	Session 4 : Technology Needs for Improving Horticulture in The Tropics Prof. Masayoshi Shigyo, Yamaguchi University, Japan "Proposal for a forwarding model in order to encourage social interaction among HRs and/or PGRs via platform operation based on research collaboration in Indonesian vegetable crops" Prof. Sri Hendrastuti Hidayat, Department of Plant Protection. Faculty of Agriculture. Bogor Agricultural University "Integrated Disease Management for Vegetable Crops: Concepts and Practices" Dr. Catur Hermanto, Indonesian Vegetables Research Institute (IVEGRI) "Pest And Disease Threats and Challenges For Future Vegetable In The Tropic"					
15.00 - 16.00	Concluding and Remarks					
16.00 - 18.00	Farewell Drink					

ORAL PRESENTATION SCHEDULE

Tuesday, November 29th 2016

TIME	PRESENTER	CODE	TITLE
	NAME		
08.30 - 08.45	Slamet Susanto	OP 1	Prolong Shelflife of Seedless Pummelo (Citrus maxima (L.)
08.30 - 08.43			Osbeck) Fruit During Storage
08.45 - 09.00	Dini Hervani	OP 2	Cryopreservation of Long-term Plant Germplasm Storage
09.00 - 09.15	Sulassih	OP 3	Variability of Jackfruit Based on Morphology and
	Sulassih		Molecular ISSR
		OP 4	Characterization of Local Durian Varieties In Central Java
09.15 – 09.30	Ahmad Solikin		Using Molecular Markers Inter Simple Sequence Repeats
			(ISSR)
		OP 5	Packaging Design and Postharvest Treatment to Maintain
09.30 - 09.45	Nelinda		the Quality of Rambutan (Nephelium Lappaceum L.) in
			Distribution System
09.45 - 10.00	Maxmilyand	OP 6	Disease Incidence and Molecular Analysis of Banana
	Leiwakabessy		Bunchy Top Virus in Bogor, West Java
10.00 - 10.15	Ajmir Akmal	OP 7	Transpiration rate of relationship fruit with Gamboge of
			Mangosteen (Garcinia mangostana L.)

Paralel 1

Paralel 2

TIME	PRESENTER	CODE	TITLE
	NAME		
08.30 - 08.45	Juang Gema	OP 8	Growth and Production of Some Moringa oleifera Lam.
08.30 - 08.43	Kartika		Accession at Several Harvesting Interval
		OP 9	Conservation Agriculture with Soil Health: Optimal Fosfor
08.45 - 09.00	Lutfi Izhar		Fertilizer Rate for Tomato (Lycopersicon esculentum Mill.
			L) on Inceptisols
00.00.00.45	Adhitya	OP 10	Stakeholders Analysis in Seed Provision System
09.00 - 09.15	Mahendra K		Development Originated from True Seed of Shallot
09.15 - 09.30	Endro Gunawan	OP 11	Policy Analysis on Shallot Stock Seed Program Though The
			Botanical Seed (True Shallot Seed) TSS
09.30 - 09.45	Ali Asgar	OP 12	Integrating Understanding of Indigenous Vegetable
			Nutrients and Benefits
09.45 - 10.00	Marlin	OP 13	Metabolite Changes in Shallot (Allium cepa var
			aggregatum) during Vernalization
10.00 - 10.15	Suhesti Kusuma	OP 14	The Effects of Vernalization and Photoperiod on Flowering
			of Shallot (Allium cepa var. ascalonicum Baker) in Lowland
	Dewi		Area

International Seminar on Tropical Horticulture Bogor, 28 – 29 November 2016

Paralel 3

TIME	PRESENTER	CODE	TITLE
	NAME		
		OP 15	Study of Phenology and Determination of Seed
10.30 - 10.45	Satriyas Ilyas		Physiological Maturity of Long Bean (Vigna sinensis L.)
			Based on Heat Unit
	Endah Retno	OP 16	Chromosome Number Estimation of Diploid,
10.45 - 11.00	Palupi		Autotetraploid and Triploid Hybrid 'Rejang' Banana Using
	raiupi		Protoplast from Male Flower (anther)
	Yudiwanti	OP 17	Performance of Some First Generation Corn Populations
11.00 - 11.15			derived from Selfing and Sibbing for Developing Baby Corn
	Wahyu		Varieties
11.15 – 11.30	Adv Darvanto	OP 18	Inheritance of Chili Pepper Resistance Against Infestation
11.15 - 11.50	Ady Daryanto		of Aphis gossypii Glover (Hemiptera: Aphididae)
		OP 19	Variation in Floral Morphology of Agamosporous
11.30 – 11.45	Edi Santosa		Amorphophallus Muelleri Blume of Natural and
			Gibberellins Treatment
11.45 – 12.00	Kusuma Darma	OP 20	The Eco-Friendly Technology to Control Pests and
11.45 - 12.00	Kusuma Darma		Diseases of Shallot
		OP 21	Phylogenetic Study of Indigenous Pulses Based on
12.00 - 12.15	Filemon Yusuf		Morphological and Inter Simple Sequence Repeat (ISSR)
			Markers

Paralel 4

TIME	PRESENTER	CODE	TITLE
	NAME		
10.30 - 10.45	Ririh Sekar	OP 22	Growth and Production of Black Cumin (Nigela sativa L.)
10.30 - 10.45	Mardisiwi		at Several Composition Media and Watering Interval
10.45 - 11.00	Evi Setiawati	OP 23	Growth and Production of Black Cumin (Nigela sativa L.)
10.45 - 11.00			at Shade Levels and Nitrogen Doses
11.00 - 11.15	Tatik Raisawati	OP 24	The Nutritional Value and Total Flavonoid Content of
			Sonchus arvensis L. Leave
11.15 – 11.30	Dewi Sukma	OP 25	Diversity Analysis of Phalaenopsis by Using SNAP Marker
		OP 26	Morphological, Molecular Charactheristics and
11.30 - 11.45	Widya Sari		Pathogenicity of Fusarium spp. from Some Cultivars of
			Banana
11.45 – 12.00	Juwartina Ida	OP 27	In Vitro Shoots Multiplication of Sapodilla (Manilkara
	Royani		zapotta Van Royen) with Modified MS Media
12.00 - 12.15	Willy B. Suwarno	OP 28	Melon Breeding: Past Experience and Future Challenge

.

Table of Content

Fruits

Evaluation of Morphological and Cytological Character of F1 Diploid Hybrid Banana Sapon and Musa acuminata var. tomentosa (K.Sch) Nasution
Diyah Martanti, Tri Handayani and Yuyu Suryasari Poerba1
Fruit Plants of Kalimantan : Results of Field Exploration and Conservation Sudarmono
Melon Breeding: Past Experiences and Future Challenges Willy B. Suwarno, Sobir, and Endang Gunawan
In vitro shoots multiplication of Sapodilla (<i>Manilkara zapotta</i> Van Royen) with modified MS media
Juwartina Ida Royani
Confirmation Number of Chromosome Diploid, Autotetraploid and Triploid Hybrid 'Rejang' Banana Using Digested Anther Tri Handayani, Diyah Martanti, Yuyu S. Poerba, Witjaksono
Disease Incidence and Molecular Analysis of Banana Bunchy Top Virus in Bogor, West Java Maxmilyand Leiwakabessy, Sari Nurulita, Sri Hendrastuti Hidayat
The Potential of Liquid Smoke Coconut Shell in Extending The Shelf Life of Tropical Fruits Ira Mulyawanti, Sari Intan Kailaku and Andi Nur Alamsyah
The Effects of The Application of Edible Coating, Antimicrobial Agent, Packaging and Absorber on Snake Fruit (Salacca edualis REINW)
Sari Intan Kailaku, Ira Mulyawanti, Asep W Permana and Evi Savitri Iriani
Packaging Design and Postharvest Treatment to Maintain the Quality of Rambutan (Nephelium Lappaceum L.) in Distribution System
Nelinda, Emmy Darmawati, Ridwan Rachmat, Lilik Pujantoro Eko Nugroho
Characterization of Local Durian Varieties in Central Java Using Molecular Markers Inter Simple Sequence Repeats (ISSR)
Ahmad Solikin, Amin Retnoningsih, and Enni S. Rahayu65

Vegetables

Shallot Varieties Adaptation in Napu Highlands, Central Sulawesi Saidah, Abdi Negara and Yogi P Rahardjo77	
Collection and Characterization of Shallot Germplasm in Effort to Support National Food Security	
Ita Aprilia, Erviana Eka Pratiwi, Awang Maharijaya, Sobir, Heri Harti	
Optimum Fertilizer of Shallot on Andisol and Latosol Soils Gina Aliya Sopha, Suwandi	

Effect of Organic Fertilization on The Growth and Yields of New Onion Varieties in Limited Land
I Ketut Suwitra dan Yogi P. Raharjo94
Interaction Between Varieties and Plastic Mulch on Shallot Growth in Dryland South Kalimantan Lelya Pramudyani
Effect of <i>Trichoderma</i> and <i>Penicillium</i> Application (Isolated From Pine Rhizosphere) to The Shallot Growth Shinta Hartanto dan Eti Heni Krestini
The Effects of Vernalization and Photoperiod on Flowering of Shallot (<i>Allium cepa</i> var. ascalonicum Baker) in Lowland Area Suhesti Kusumadewi, Hamim, Sobir
Metabolite Changes in Shallot (<i>Allium cepa</i> var <i>aggregatum</i>) during Vernalization Marlin, Awang Maharijaya, Sobir, Agus Purwito118
Stakeholders Analysis in the Development of Seed Provision System Originating from True Seed of Shallot
Adhitya Marendra Kiloes, Puspitasari, and Turyono124
Policy Analysis on Shallot Stock Seed Program through The Botanical Seed (True Shallot Seed/TSS) Endro Gunawan and Rima Setiani
The Dynamic of Shallot Production, Supply and Price after the Implementation of Horticulture Import Regulations
Puspitasari and Adhitya Marendra Kiloes
Characterization and Resistance to Bacterial Wilt Diseases (<i>Ralstonia solanacearum</i>) of 20 Eggplant (<i>Solanum melongena</i> L.) Genotypes Heri Harti, Teni Widia, Pritha, Awang Maharijaya

Miscellaneous

Cryopreservation for Long-term Plant Germplasm Storage	
Dini Hervani, Darda Efendi, M. Rahmad Suhartanto, Bambang S. Purwoko	.149
Good Manufacturing Practices (GMP) for Fresh-Cut Fruits and Vegetables	
Sari Intan Kailaku, Ira Mulyawanti and Andi Nur Alam Syah	.154
Breeding of Anthurium (Anthurium andreanum) : A strategy to produce new clones as tropic ornamental plants	
Ridho Kurniati, Kurnia Yunianto, Suskandari Kartikaningrum	.161

Metabolite Changes in Shallot (*Allium cepa* var aggregatum) during Vernalization

Marlin^{1,2}, Awang Maharijaya^{2,3}, Sobir^{2,3}, Agus Purwito²

¹⁾ Department of Agronomy, University of Bengkulu, Indonesia

²⁾ Department of Agronomy and Horticulture, Bogor Agricultural University, Indonesia.

³⁾ Center for Tropical Horticulture Studies, Bogor Agricultural University, Indonesia

Abstract

The flower induction in shallot can be initiated by providing a vernalization treatments. The vernalization might affect the composition of metabolome. The metabolomic composition determines the physiological processes and functions of the plants and parts. Metabolomes can spatially define the structure of tissues and organs including flower. The objective of this research is to determine metabolite composition in four different growth stadia of bulbs with different vernalization treatment. GC-MS analysis detected 88 compounds that were different at different growth stadia of bulbs. The results demonstrated that phytol is a major compound that suggested corresponding to metabolite changes during vernalization with regard to bulbs growth stadia. The correlation analysis confirm that the differences of metabolite profile might play a key role in flowering initiation in shallot.

Keywords : Shallot, vernalization, flower induction, metabolomic, GC-MS analysis

1. Introduction

Shallot (*Allium cepa* var. *aggregatum*) is vegetatively propagated using its bulbs which spreads of contaminations and deseases to the next generation. Propagation by generative part experienced problems because some genotypes unable to initiate the flowering. In onion plants, flowering can be induced by providing vernalization treatment at 4-5°C (Ami *et al* 2013; Elsiddig 2015). Transition of vegetative phase into a reproductive phase involves a number of biological and biochemistry processes of plants (Halevy 1990; Bernier *et al.* 1993). The changes occur during metabolite process can be an important indicator to show the status of plant growth and development.

The last decade has seen an enormous trend towards plant extracts such as essential oils, volatiles, and other compound released by the secondary metabolism of plants. Secondary metabolites that are formed during the process secondary metabolism can be measured by GC-MS analysis. The analytical strategy (GC-MS) used to analyze the volatile compounds, and selected compounds were structurally analysed by mass spectrometry transposing the method to GC-MS (Lekshmi *et al.* 2014). Metabolomic technologies have recently revealed new insights in biological systems through metabolic dynamics (Iijima 2014). Investigation on the biological activities of *Allium* compounds, as well as other phyto-compounds, and their mechanisms of action is still a major challenge for biochemistry, microbiology and plant breeding program. This study aims to determine metabolite composition in four different growth stadia of bulbs with different vernalization treatment.

2. Materials and Methods

Plant materials

Shallot bulbs of variety Bima Brebes were used as planting materials. Bulbs weight at 5-7 g were selected and germinated to shoot growth (1-3 cm in lenght). The treatments consisted of vernalization treatments, and noticed as non-vernalized bulbs (S₀), and vernalized bulbs at 3 growth stadia (S₁ = 1 cm of shoot, S₂ =2 cm of shoot, S₃ = 3 cm of shoot). The vernalization treatment were placed in chamber at 8°C for 5 weeks. The bulbs were then planted in 45 cm diameter polythene bags containing 8 kg of growing media (soil: manure: husk = 2: 1: 1). Each polybags planted three bulbs. Before planting shallot bulbs soaked in a fungicide solution with the active ingredient benomil 50% at a concentration of 2 g/L for 15 minutes. Furthermore tubers soaked back into solution PGPR (plant growth promoting root) with a concentration of 5 g/L for 15 minutes. NPK fertilizers is given with a ratio of 15:15:15, a dose of 600 kg/ha or 2.4 g/polybag. The fresh leaves at 4 weeks after planting were carried directly to GCMS investigation.

GC-MS analysis

The samples were the leaves of shallot plants at 4 weeks after planting. GC-MS pyrolisis unit was carried out on an GCMS-QP2010 system coupled to Mass Spectrometer Detector. The sample were inserted into the quartz chamber in the pyrolysis unit. Helium was used as a carrier gas in a constant flow mode at 0.85 ml/min. The pyrolisis chamber were heated in an oxygen-free environment at a temperature of 400°C for 0.2 minutes. The reaction will produce heat-mediated cleavage of chemical bonds in the macromolecular structure and produce low molecular weight with a chemical composition that identify specific compound of metabolite. Compound mixtures were then passed trhough the column GC-MS analysis. The column is Rt x 5 MS, with length 60.0 m, thickness 0.25 μ m, and diameter 0.25 mm.

The initial temperature of the column was 50°C, which was gradually increased by 10°C up to 280°C. At the end of this period, the column oven temperature was 50 °C raised up to 280°C. Injection port temperature was ensured as 280°C and helium flow rate as 0.85 ml/min. Mass spectrometer detector was employed to detect compounds when they were vented from the column. Temperature of the detector was 200°C. The mass spectra obtained through GC–MS were analysed by using data library such as WILEY7.LIB and the NIST webbook database. The volatile compounds of the plant samples were then identified for each treatments.

3. Results and Discussion

The edible Allium are characterized by their rich content of thiosulfinated and other organosulfur compound. Metabolite composition in the shallot leaves extracts were identified by GC-MS analysis. The 88 metabolites were identified in this research.

GC-MS analysis of the shallot leaves in this research showed that the different of vernalization treatment contains different metabolite composition. In non-vernalized bulbs has the highest content of formamide (CAS) methanamide (37.00%). While in vernalization bulbs (with 1 cm of shoot) contains methanamine, N-methyl (CAS) dimethylamine (41.45%), butane (5.98%), and phytol (6.81%). (Figure 1a). Formamide is a clear liquid which is miscible with water and has an ammonia-like odor. Lokke *et al.* (2012) reported that in onion bulbs had the highest concentrations propanethiol and had an odor activity value 20 times higher than dipropyl disulfide.

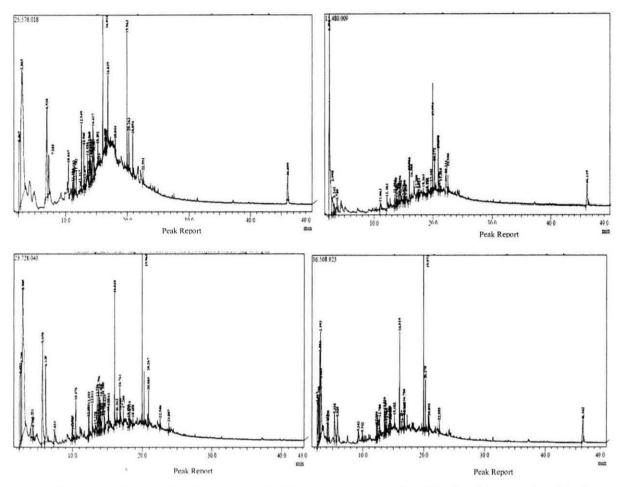


Figure 1. Metabolite changes in shallot. a) non-vernalized bulbs, b) vernalized bulb, bulbs stadia with 1 cm of shoot, c) vernalized bulbs, bulbs stadia with 2 cm of shoot, d) vernalized bulbs, bulbs stadia with 3 cm of shoot.

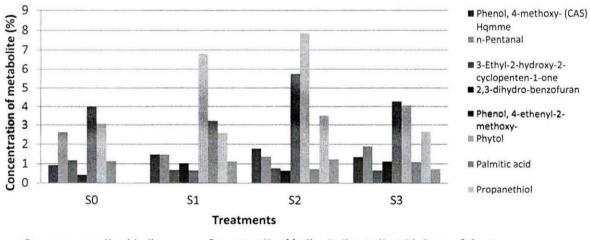


Figure 2. Metabolite composition in non-vernalized and vernalized bulbs of shallot (4 weeks after planting)

The results showed metabolite composition with different concentrations in all treatments. The content of phytol in vernalized bulbs were higher (4.28 to 7.86 %) compared with non-vernalized bulbs (4.01 %). Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Percentage of flowering plants in non-vernalized bulbs was only 29.63% which is significantly different from vernalized bulbs (79.63%), *data is not shown*. Continued research in biochemical and physiological are needed to prove the role of phytol in flower initiation process of shallot.

The results was also revealed that metabolite composition in vernalized bulbs were higher than the non-vernalized bulbs. But, the content of n-pentanal and 3-ethyl-2-hydroxy-2cyclopenten-1-one, in non-vernalized bulbs were higher than vernalized bulbs (Figure 2). Pentanal, also called pentanaldehyde or valeraldehyde, is an alkyl aldehyde, molecular formula $C_5H_{10}O$. It is used in flavorings, resin chemistry, and rubber accelerators (https://en.wikipedia.org/wiki/Pentanal). The results clearly showed that the odors and the flavours compound were identified higher in non-vernalized bulbs than vernalized bulbs of shallot. Most of the disulphides and thiol groups in onion were also determined by Lokke *et al.* (2012) and Lekshmi *et al.* (2014) determined the presence of ethanol, isoamyl acetate, isobutyl alcohol, propyl alcohol, palmitic acid, stearic acid, and lanosterol in the onion cultivars.

There are 7 metabolites composition were be found in each vernalization and bulbs growth stadia treatments with different level concentrations. The vernalized bulbs seemed had a higher concentration of metabolite compared to non-vernalized bulbs of shallot. There are also two compounds in vernalized bulbs but can not be found in non-vernalized bulb, namely 1-propanethiol (CAS) propanethiol and phenol, 4-ethyl- (CAS) p-ethylphenol. Propanethiol is an organic compound with the molecular formulas and structural formulas similar to alcohols, except that sulfur-containing sulfhydryl group (-SH) replaces the oxygen-containing hydroxyl group in the molecule. It is a colorless liquid with a strong, offensive odor (https://en.wikipedia.org/wiki/Propanethiol). Further study is recuired to prove a specific compound responsibility in flowering initiation in shallot. Mass spectrometry combined with a separation technique offers tremendous opportunities for analysis of complex biological samples because it enables the determination and identification of a large number of metabolites in a single analysis (Villas-Boas *et al.* 2005).

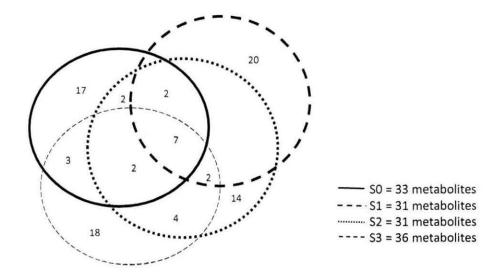


Figure 3. Metabolites distribution in non-vernalized and vernalized bulbs of shallot

4. Conclusions

The investigation metabolites compound in shallot by GC-MS revealed the dynamics of the emission of metabolites change during vernalization of germinated bulbs. By means of GC-MS, an estimate of the concentrations of different compounds in the freshly leaves of shallot was indentified. The results demonstrated that phytol is a major compound that suggested corresponding to metabolites changes during vernalization with regards to bulb germinated stage.

Acknowledgement

The researchs are fully funding by National Innovation System Research Insentive 2016, Ministry of Research, Technology, and Higher Education, Indonesia.

References

- Ami EJ, Islam MT, Farooque AM. 2013. Effect of vernalization on seed production of onion. Agriculture, Forestry and Fisheries 2(6): 212-217
- Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P. 1993. Physiological signals that induce flowering. Plant Cell 5:1147-55. PMID:12271018.
- Elsiddig EAM, Elamin OM, Elkashif ME. 2015. Induction of flowering in Texas Early Grano onion cultivar using vernalization and gibberellic acid under Gezira State conditions, Sudan. International Journal of Scientific and Research Publications, 5(9).
- Halevy AH. 1990. Recent advances in control of flowering and growth habit of geophytes. Acta Hort. 266:35-42.
- Iijima Y. 2014. Recent advances in the application of metabolomics to studies of biogenic volatile organic compounds (BVOC) produced by plant. Metabolites 4: 699-721. Doi : 10.3390/metabo4030699
- Lekshmi NCJP, Viveka S, Viswanathan MB, Manivannan G, Shobi TM. 2016. GC-MS characterization of volatile odorous compounds in *Allium Cepa*. Nanobio Pharmaceutical Technology. *Nanobio Pharmaceutical Technology*. DOI: 10.13140/2.1.3278.7523.

 Lokke MM, Edelenb os M, Larsen E, Feilberg A. 2012. Investigation of Volatiles Emitted from Freshly Cut Onions (*Allium cepa* L.) by Real Time Proton-Transfer Reaction-Mass Spectrometry (PTR-MS). Sensors 12: 16060-16076. Doi:10.3390/s121216060
Villas-Bo^{as} SG, Mas S, Akesson M, Smedsgaard J, Nielsen J. 2005. Mass spectrometry in metabolome analysis. *Mass Spectrometry Reviews* 24: 613-646.