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ABSTRACT 
This paper presents the thorough evaluation and analysis on the 

direct inverse neural networks based controller systems for a 

double-propeller boat model. Two direct inverse controller 

systems that were designed with and without feedback were 

implemented on a double propeller boat model using two neural 

networks based control approaches, namely the back-propagation 

based neural controller (BPNN-controller) and the self-

organizing maps based neural controller (SOM-controller). Then, 

the resulted control errors of the systems were compared. 

Simulation results revealed that the direct inverse control without 

feedback produced lower error compared to the direct inverse 

control with feedback. Another important finding from the study 

was that the SOM-controller is superior to the BPNN-controller 

in terms of control error and training computational cost.  

CCS Concepts 
• Computing methodologies➝Computational control theory  
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1. INTRODUCTION 
Autonomous control of an Unmanned Surface Vehicle (USV) is 

becoming a widely studied research topic. The difficulties on the 

autonomous USV control system are generally caused by the 

dynamic, complex and unstructured USV working environment 

due to the effects of winds, water currents, ocean waves, and 

other nonlinear causalities [1]. In theory, the USV dynamics is 

highly coupled, time-varying and nonlinear [2]. This makes the 

mathematical controller design becomes even more difficult and 

may not be sufficient to represent the complexity of the problem.  

Recently, the use of artificial neural networks algorithm as the 

control system for a time-dependent nonlinear system has been 

widely reported. One of such methods is the nonlinear inverse 

model based, which highly depends on the availability of the 

inverse of the plant model. Since any nonlinear system including 

their inverse can be modelled by the neural networks, their use as 

controller is promising.  

Due to its simple but powerful structure, backpropagation based 

controller is the most widely adopted neural networks controller 

among all of the developed controllers based on artificial neural 

networks. The learning concept is quite straight-forward, it 

iteratively adjust the neural connection weights to minimize the 

difference between the actual output vector and the desired 

output vector through the back-propagated error. A detailed 

analysis on backpropagation based neural network controller 

(BPNN-controller) has been presented in [3] and it is proven that 

the proposed controller is able to produce a very low error. 

Another neural network based controller that was recently 

developed is the Self-Organizing Maps based controller (SOM-

controller). The idea is to use SOM as an inverse controller to 

approximate the dynamical input–output mappings of the plant 

[4][5].   

In this paper, the use of BPNN-controller and SOM-controller 

under the direct inverse control schemes to control a double-

propeller boat model will be compared and evaluated. Moreover, 

the necessity to use feedback for the direct inverse control system 

will also be analyzed by empirical simulations.  

This paper is organized in 5 sections. The next section presents 

the development of a boat model and its neural network 

identification model. Then, the basic concepts of the neural 

networks based controllers based on BPNN and SOM are 

presented in Section 3. Section 4 presents the neural-network 

based direct inverse control simulation results including the 

thorough analysis and evaluation of the utilized schemes and 

methods. The paper is concluded in Section 5. 

2. BOAT MODEL AND ITS NEURAL 

NETWORK BASED IDENTIFICATION 

2.1 Boat Model 
In this work, a double-propeller boat model without a rudder is 

developed as a USV system to mimic the characteristics of the 

real double propeller boat system. By using this boat model, the 

analysis of the developed controller system could be done by 

moving the model in the floor instead in the water, eliminating 

the effect of the ocean waves and currents. Figure 2 shows the 

block diagram of the boat model. This boat model is assembled 

using a microcontroller, two MT-BLDC motors that are 

connected to two T18A-ESC motor and two E-propellers 12.5 cm, 

a compass sensor, an Inertial Measurement Unit (IMU) that 

consists of gyroscope, accelerometer and barometer, a voltage 

regulator, and a Li-Po battery as the power system. 
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Figure 1. The boat model 

 

 
Figure 2. Block diagram of boat model’s components. 

 

 

Figure 3. Data acquisition with manual control. 

 

The movement of the double-propeller boat model is controlled 

by human through a radio control system, and is considered only 

in three-degrees of freedom (3DOF), i.e., yaw, surge, and sway 

[2]. The boat movement is caused by the difference between two 

thrust forces which are generated by the two pairs of motor and 

propeller in the back side of the boat model. The movements of 

the boat model are driven by the surge velocity vx, the sway 

velocity vy, both in the body-fixed frame, and the heading angle 

or yaw , in the inertial frame [6].  

The double-propeller boat model could be considered as a MIMO 

system that has two input control signals and three output 

parameters which show its movement. The boat model is moved 

by two input control signals, i.e., PWM1 for the left motor and 

PWM2 for the right motor. The output parameters are the boat’s 

direction or heading in inertial frame (yaw), the front (surge) 

velocity in body-fixed frame (vx), and the side (sway) velocity in 

body-fixed frame (vy). Since the developed control system is 

constructed based on a neural networks system, the learning data 

of the boat movements are required, and those data are provided 

by the movement of the boat model through a human-expert 

using a radio control system. 

Figure 3 shows the block diagram of the data acquisition method 

using a manual control. The yaw output data is recorded by a 

compass sensor, whereas the surge velocity vx and the sway 

velocity vy are obtained by using the accelerometer and the 

controller’s timer.  

In this research, the learning data for the neural networks based 

controller system consists of four straight trajectory movements. 

All of the 4 trajectory data will be utilized to train the system 

identification. The data that will be used to train the neural 

networks controller system is shown in Figure 4. The graph on 

the upper part shows the two control signals that control the left 

and the right propellers, to maintain the boat model on a straight 

course. The graph on the middle part shows the direction of the 

boat model in the inertial frame, which is relatively constant and 

clearly reflects that the boat model is moving straight forward 

with v0. The graph on the lower part depicts the surge and 

sway velocities. The sway velocity vy is nearly zero because the 

boat is moving forward without moving to the either sides. 

Meanwhile, the surge velocity vx is constantly increasing as a 

result of the two rotating propellers that constantly speed-up the 

boat model.  

 

 
Figure 4. The acquisition database for training the neural 

networks. 

 

2.2 NN-Based System Identification 
Plant identification is done by adopting the nonlinear 

autoregressive exogenous model (NARX) approximation, 

expressed as: 

                               

            

 

(1) 

where y is the plant output, u is the plant input,    and    are the 

delay or memory operators for the plant output and input, 

respectively. In this work, the neural networks based system 

identification is a multi-layer perceptron neural network which 

consist of one input layer with 15 neurons, one hidden layer with 

30 neurons, and one ouput layer with 3 neurons, respectively. The 

configuration for the boat model system identification is shown in 

Figure 5. All of the neurons other than that in the input layers use 

a bipolar Sigmoid activation function.  

To obtain the plant model, a back-propagation learning 

mechanism is adopted to train the neural network configurations 

with learning rate equal to 0.2. After 701,595 epochs, the training 

converge with a training mean-sum-square error (MSSE) of 

2.2383 x 10-4. The testing results of the system identification are 

depicted in Figure 6. The testing MSSE is 3.679 x 10-4, which can 

be detailed as mean-square-error (MSE) of each output 

parameters as follows: the MSE for yaw is 1.811 x 10-4, the MSE 

for vx is 1.838 x 10-4, and the MSE for vy is 7.388 x 10-4. These 
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low values of errors reflect that the designed neural networks-

based identification system can successfully model the real 

transfer function of the plant with very high approximation. 

 
Figure 5. MIMO system identification with ANN. 

 

 
Figure 6. ANN-based system identification   

(MSSE = 3.679 x 10-4). 

3. NEURAL NETWORKS BASED 

INVERSE CONTROLLER 
Among all of the existing nonlinear control approaches, the 

nonlinear inverse model based control strategy is one of the most 

promising methods [7][8]. In this scheme, the controller simply 

acts as the inverse of the plant, with the following NARX 

equation: 

                                     

            

 

(2) 

with y is the vector of the plant outputs, u is the vector of the 

plant inputs, and    and    are the delay or memory operators of 

the plant output and input, respectively.  

In our developed system, the inverse transfer function of the plant, 

f-1, is replaced by the artificial neural networks. Two learning 

algorithms will be used, namely the backpropagation learning 

algorithm for the BPNN-controller and the self-organizing maps 

learning for the SOM-controller. 

3.1 BPNN-Controller 
The architectural configuration of the BPNN-controller system 

consists of one input layer with 21 neurons, one hidden layer 

with 15 neurons, and one output layer with 2 neurons, 

respectively, as shown in Figure 7. Back-propagation learning 

mechanism is used to train the neural network with learning rate 

equal to 0.01, and the produced output MSSE of the neural 

controller is 4.4500 x 10-4. It is obvious that the backpropagation 

training can produce a very low error which reflects that the 

controller can resemble the inverse plant transfer function with 

very high approximation. 

 
Figure 7. Boat model BPNN inverse controller training. 

 

3.2 SOM-Controller 
To be comparable with the developed BPNN-controller, the 

SOM-controller is developed with the same network 

configuration, e.g. 21 input neurons and 2 output neurons. The 

difference is the utilized learning algorithm, where the INV black 

box in Figure 7 is replaced by SOM input-output dynamics 

mapping.  

Generally, SOM is used for static input-output mappings. 

However, the inverse control scheme in equation (2) requires 

dynamic input-output mappings since the plant inputs u[k] is a 

function of its previous inputs u[k-1], …, u[k-nu+1], expected 

outputs y[k+1] and previous outputs y[k], …, y[k-ny+1]. Therefore, 

some modifications to the original Kohonen SOM algorithm 

should be taken [4][5]. In this approach, the input vector of SOM 

is augmented into:  

       
      

       
                                 (3) 

where  

                                

                                        (4) 

                                              (5) 

The elements of vector xin[k] in equation (4) are the input data of 

the learned dynamic mapping. Similarly, the elements of vector 

xout[k] in equation (5) are the desired output of this mapping. In 

the case of inverse controller, the desired output is the control 

signals which will become the plant input, u[k]. Following the 

augmentation of x[k], the neuron weights or the reference vectors 

v[k] are also augmented accordingly to become vin[k] and vout[k] 

as depicted in Figure 8. 

 
Figure 8. The architectural structure of SOM-DIC system. 
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On the training stage, the winning neuron j* at time k is decided 

from the smallest Euclidean distance between        and   
     . 

Afterwards, both the winning reference vectors or the reference 

vectors with index j*,    
      and    

      , are updated. Similarly, 

on the testing stage, the winning neuron j* is obtained from 

       and    
     , and the resulted control signal is the output 

reference vector expressed as:  

        
      .                                    (6) 

In this study, to empirically analyze the effect of size of neurons 

to the control performance, three SOM-controllers are developed 

by using 10, 30, and 66 mapping neurons respectively. The initial 

learning rate is set to be 0.9 with 0.9 learning rate reduction 

factor. The minimum learning rate value is set to 10-6 as the 

learning effect for a leaning rate value below this threshold can 

be neglected. This threshold value is equivalent to 131 training 

iterations. The obtained training MSSE for the SOM-controller 

with 10 mapping neurons is 0.0027, whereas that for 30 and 66 

mapping neurons are 8.2676 x 10-4and 0, respectively. It should 

be noted that the basis of SOM-controller is by using the 

mapping neurons to directly map the input to the correct output. 

Thus, the use of 66 mapping neurons which are the same as the 

size of the training data (see Figure 4) will produce zero error, 

since all of the input data will be exactly mapped to the 

corresponding output data.  

4. DIRECT INVERSE CONTROL 

SCHEMES 
Block diagram of the open-loop direct inverse control schemes 

are schematically depicted in Figure 9. The superiority of the 

neural networks based direct inverse controller lies on its 

capability of utilizing the most powerful characteristics of the 

neural networks learning mechanism. However, at the beginning 

of the control process, the plant may lose robustness since the 

initial output will depend on the initial weight matrix that is 

determined semi-randomly. As can be seen from Figure 9, the 

neural network DIC relies on the fidelity of the inverse model as 

the controller. 

In general, problems such as lack of robustness may occur due to 

the absence of feedback signals. Recent ideas in an effort to 

optimize the DIC open-loop system, feedback signals from the 

system output are inputted backward to the neural inverse 

controller as shown in Figure 9(b). Although some feedback 

signals from the plant output are used as some of the inputs to the 

neural inverse controller, the system may also response to the 

errors of the system identification (the simulated plant) or 

discrepancies of the plant in its real application. These 

phenomena may deteroit the performance of the DIC controller 

system. This structure will be called as an open-loop DIC system 

with feedback, to distinguish this with a closed-loop system that 

has different fundamental characteristics. 

 

 

(a) 

 
(b) 

Figure 9. Open-loop direct inverse control scheme (a) without 

feedback (b) with feedback. 

4.1 Direct Inverse Control without Feedback 
To perform a comparative analysis, the 4 neural-networks 

controller configurations, 1 from the backpropagation training 

(BPNN-controller) and 3 from the self-organizing maps training 

(SOM-controllers), are implemented on the direct inverse control 

(DIC) scheme without using feedback. The DIC simulation result 

for the BPNN-controller produces a mean-sum-square error 

(MSEE) of 0.0098 as depicted in Figure 10. Meanwhile, the DIC 

simulation results for SOM-controller with 30 mapping neurons 

produces a MSSE of 0.0040 as shown in Figure 11. The MSSE of 

DIC for SOM-controllers with 10 and 66 mapping neurons are 

0.0048 and 0.0042, respectively.  

 

 
Figure. 10. Open-loop direct inverse control without 

feedback of a BPNN-controller system (MSSE = 0.0098). 

 
Figure 11. Open-loop direct inverse control without feedback 

of a SOM-based controller system with 30 mapping neurons 

(MSSE = 0.0040) 
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4.2 Direct Inverse Control with Feedback 
To analyze the effect of feedback signals to the DIC systems, the 

4 neural-networks controllers are also implemented on DIC 

scheme with feedback. The MSSE for the BPNN-DIC system is 

0.1826 and the simulation results are depicted in Figure 12. 

Meanwhile, the MSSE for DIC-SOM with 30 mapping neurons is 

0.0060 and the simulation results are depicted in Figure 13. The 

MSSE of DIC-SOM with 10 and 66 mapping neurons are 0.0067 

and 0.0066, respectively. 

4.3 Performance Comparison 
The overall comparison of the neural network based direct 

inverse control schemes are given in detail in Table 1. It can be 

clearly seen that the SOM-controllers require much lower 

training epoch compared to the BPNN-controller, which is 

proportional to the required computational time. The training 

mean-sum-square error (MSSE) for the SOM-controllers differs, 

where higher numbers of mapping neurons produce lower 

training MSSE. The MSSE of SOM-controller with 30 mapping 

neurons is comparable with that of the BPNN-controller. 

 

 
Figure 12. Open-loop direct inverse control with feedback of 

a BPNN-controller system (MSSE = 0.1826). 

 
 

Figure 13. Open-loop direct inverse control with feedback of 

a SOM-based controller system with 30 mapping neurons 

(MSSE = 0.0060). 

Table 1. Overall comparison of the NN-based direct inverse 

control schemes 

 
BPNN 

21-15-2 

SOM 

21-10-

10-2 

SOM 

21-30-

30-2 

SOM 

21-66-

66-2 

Epoch train 99899 131 131 131 

MSSE INV 

training 

4.4500 x 

10-4 
0.0027 

8.2676 x 

10-4 
0 

MSSE DIC 

No Feedback 
0.0098 0.0048 0.0040 0.0042 

MSE yaw 0.0008 0.0006 0.0005 0.0005 

MSE vx 0.0009 0.0013 0.0006 0.0003 

MSE vy 0.0277 0.0125 0.0110 0.0117 

MSSE DIC 

Feedback 
0.1826 0.0067 0.0060 0.0066 

MSE yaw 0.0139 0.0007 0.0007 0.0007 

MSE vx 0.3613 0.0050 0.0043 0.0060 

MSE vy 0.2099 0.0142 0.0130 0.0131 

 

The results also show that the mean-square-errors (MSEs) of the 

open-loop DIC system without feedback are always lower than 

that of the open-loop DIC system with feedback, both in the 

BPNN-DIC system and in the SOM-DIC system. This 

phenomenon may occurred due to the higher deviation of the 

control signals from the actual requirements, which may be 

caused by the output errors of the system identification that are 

propagated back to the NN-based controller system. 

5. CONCLUSIONS 
The use of neural network based direct inverse control for a 

double-propeller boat model has been described. Two direct 

inverse control schemes with and without feedback have been 

compared to each other through empirical simulations, using 

backpropagation neural network (BPNN) controller and self-

organizing maps (SOM) controller. The results revealed that the 

direct inverse control without feedback produced lower error 

compared to the direct inverse control with feedback. The study 

also found that the SOM-controller is better than the BPNN-

controller due to the lower control error and shorter training 

period. However, SOM-controller requires more neurons. A 

method to reduce the number of neurons of SOM-controller is 

still under investigation. 
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