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Abstract

Cholera is an infection of the small intestine caused by the gram-negative bacterium,
Vibrio cholerae. The mathematical models discussed in this study is a model of
the cholera transmission with hyperinfectious state of bacteria. This study aims to
modify the cholera model by involving hyperinfectious state of bacteria and taking
into account the effect of vaccination, treatment and water sanitation. Then we
performed the stability analysis around equilibrium point. There are two equilibria,
namely disease free and endemic equilibrium. The results of model analysis shows
that the number of each subpopulation of humans and bacteria is asymptotically
stable around disease free equilibrium if the basic reproduction number is less than
one, and asymptotically stable around the positive endemic equilibrium if the basic



reproduction number is greater than one. Numerical analysis is given to justify the
theorem from mathematical analysis and to see the effect of parameters variation
(i.e. vaccination, treatment and water sanitation) to the number of infected humans.

AMS subject classification:
Keywords: Mathematical modeling, cholera, hyperinfectious state, stability anal-
ysis.

1. Introduction

Cholera is a severe water-borne infectious disease caused by the bacteriumVibrio cholerae.
The last few years have witnessed many cholera outbreaks in developing countries, in-
cluding India (2007), Congo (2008), Iraq (2008), Zimbabwe (2008–2009), Vietnam
(2009), Kenya (2010), Haiti (2010–2011), and Cameroon (2010–2011) [20]. In 2014 a
total of 190,549 cases of cholera reported to WHO by 42 countries, 55% of the cases
were from Africa, 30% from Asia and 15% of Hispaniola. There are as many as 2,231
cholera caused deaths reported by 24 countries: 1,882 deaths occur in Africa, 42 in Asia,
and 307 in Hispaniola. Cholera cases and deaths reported only represent a small portion
of the actual cases. Allegedly there are more than 2 million cases and nearly one hundred
thousand deaths due to cholera every year [17]. Based on the description, cholera re-
mains a major health problem in the world. Therefore, we need to develop mathematical
model of cholera disease that can describe the dynamics of cholera transmission.

The bacterium Vibrio cholerae can enter the body through consumed food or bever-
ages. At the infecting time, these bacteria produce enterotoxin which results the discharge
of body fluids in large numbers, so that without proper treatment, an infected individual
can be passed. After getting infected, cholera sufferers will shed Vibrio cholerae together
with their feces. Freshly shed bacteria from the human gastrointestinal tract has high
infectivity, which is called hyperinfectious. But the hyperinfectious bacteria decays in a
matter of hours into a lower infectious state. It means that hyperinfectious bacteria can
only be ingested if there are meeting (i.e. using the same river or toilet on the same day)
between susceptible with infected individuals. Thus, hyperinfectivity of bacteria is the
key to understanding the nature of the spread of cholera from human-to-human [7].

Since the pioneering work of Edward Jenner on smallpox [10], vaccination has been
a commonly used method for diseases control [11, 12, 13] and works by reducing the
number of susceptible individuals in a population. For cholera disease, oral cholera vac-
cine (OCV) has been proposed as an effective adjunct in endemic and epidemic settings
[2, 16]. Besides that, sanitation interventions, such as chlorination, have long been recog-
nized as effective prevention measures against cholera and other diarrheal diseases [8, 9].
Many public health scientists believe that sustained improvements in access to safe water
and sanitation can eliminate transmission of cholera, citing interventions used through-
out South and Central America in the 1990s [14, 15]. In the other hand, treatment is
the most important thing to eradicate the disease. Therefore, vaccination, treatment, and
sanitation interventions can play an important role in decreasing the burden of cholera.
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A lot of research work has been done on the cholera transmission dynamics [1, 4,
5, 19]. For example, Codeco [1] in 2001 has modeled the cholera transmission that
explicitly accounted for the environmental element, i.e. the V. cholerae concentration
in the water supply, into a regular SIR epidemiological model. The infection force was
modeled by a logistic function to represent the saturation effect. Hartley, Morris and
Smith [4] in 2006 examined the model of the spread of cholera involving hyperinfectious
state of bacteria. Wang and Modnak [5] presented a model of the spread of cholera route
of transmission of the environment-to-human and human-to-human by inserting control
variables: vaccination, treatment, and water sanitation.

Here, we developed the cholera model of Hartley et al. [4] by considering vaccina-
tion, treatment, and water sanitation as control strategies. We assumed the total human
population is not constant. Furthermore, our goal is to analyze the equilibrium and the
stability of the modified model. The paper is organized into four sections. The first
section is the background and purpose of this paper. The second section describes the
formulation of the model used. The third section describes the model analysis. The forth
section perform the numerical analysis. The conclusions are provided in section five.

2. Model Description and Formulation

The total human population is divided into three compartments depending on the epi-
demiological status of individuals. These compartments include: Susceptible, S(t),
infected, I (t), and Recovered, R(t). The concentration of bacteria in the environment
is divided into two compartments, namely hyperinfectious bacteria, BH (t) , and less
infectious bacteria, BL (t).

The underlying assumptions establishing this model are as follows. The total human
population is not constant. Susceptible population increase by the rate of new comer, �.
The number of human population decreases by natural death at the rate µ. Vaccination is
introduced to the susceptible population at the rate v, so that vS individuals per time are
removed from the susceptible population and subsequently are added to the recovered
population. Infections, I , are caused by ingesting water contaminated with BH hyperin-
fecious bacteria per ml or BL less infecious bacteria per ml. Ingestion of hyperinfectious
bacteria occurs at the rate βH , while ingestion of less infectious bacteria occurs at the rate
βL. The relationship between infection rates and the density of cholera is described by a
saturating function with κL and κH are less infectious and hyperinfectious bacteria con-
centration that yields 50% chance of catching cholera, respectively. Treatment is given
to individuals who are infected at the rate a. Sanitation leads to the death of V. cholerae
bacteria at the rate w. Cholera can be recovered without certain strategies at the rate θ.

Cholera causes deaths in the sufferer at the rate d. Individuals who have recovered from
the distance, will not be reinfected because of their immune system. Infected human
contribute to subpopulation of hyperinfectious bacteria at the rate ξ. Hyperinfectious
bacteria can naturally become less infectious at the rate χ . Bacterial natural death rate
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is µp. Based on the assumptions, the model of cholera transmission is given by

dS

dt
= � − βHS

BH

κH + BH

− βLS
BL

κL + BL

− µS − vS,

dI

dt
= βHS

BH

κH + BH

+ βLS
BL

κL + BL

− (θ + µ + a + d)I,

dR

dt
= vS + (θ + a)I − µR,

dBH

dt
= ξI − χBH − wBH,

dBL

dt
= χBH − µpBL − wBL,

(2.1)

with S (0) ≥ 0, I (0) ≥ 0, R (0) ≥ 0, BH (0) ≥ 0, BL (0) ≥ 0.

In this system, the parameter �, µ, v, θ, a, d, βL, βH , κL, κH , ξ, χ, µP , w are all
non-negative constants. Furthermore, we have proven that the system (2.1) is bounded,
by following Lemma 2.1.

Lemma 2.1. The set � = {(S, I, R, BH , BL) ∈ R5+ : 0 ≤ S + I + R ≤ �

µ
+ N0 and

0 ≤ BH + BL ≤ ξ

w

(
�

µ
+ N0

)
+ B0 } is the positive bounded region of model system

(2.1), where N0 and B0 are total human population and bacterial population at t = 0,

respectively.

Proof. Let N = S + I + R, based on system (2.1) we have

dN

dt
= � − µN − dI.

Because dI is non-negative, thus

dN

dt
+ µN ≤ �. (2.2)

Inequality (2.2) is solved by using integrating factor, thus

N ≤ �

µ

(
1 − e−µt

) + N0e
−µt .

Because S (t) , I (t) , and R (t) are non-negative and 0 ≤ e−µt ≤ 1 for all t ≥ 0, then
we obtain

0 ≤ S + I + R ≤ �

µ
+ N0. (2.3)

Next, let B = BH + BL, then based on system (2.1) we have

dB

dt
= ξI − wB − µpBL. (2.4)
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Because µpBL is non-negative, then based on inequality (2.3) and equation (2.4) we get

dB

dt
+ wB ≤ ξ

(
�

µ
+ N0

)
. (2.5)

The solution of inequality (2.5) is

B ≤ ξ�

µw
+ ξN0

w
+

(
B0 − ξ�

µw

)
e−wt ,

with B0 = B (0) . Because for all t ≥ 0, BH (t) and BL (t) are non-negative and
0 ≤ e−µt ≤ 1 then we have

0 ≤ BH + BL ≤ ξ

w

(
�

µ
+ N0

)
+ B0. (2.6)

Based on inequality (2.3) and (2.6) we get

0 ≤ S + I + R ≤ �

µ
+ N0

and

0 ≤ BH + BL ≤ ξ

w

(
�

µ
+ N0

)
+ B0.

�

3. Model Analysis

The model system (2.1) is analyzed qualitatively to get insights into its dynamical features
which give better understanding of the dynamics of cholera disease transmission.

3.1. Epidemic Dynamics

The disease free equilibrium (DFE) of model system (2.1) is given by

E0
(
S0, I 0, R0, BH

0, BL
0 ) =

(
�

µ + v
, 0,

v�

µ(µ + v)
, 0, 0

)
.

To explain the stability behaviors of the equilibrium points, we need to compute the
basic reproduction number of model, R0.This disease-threshold quantity, R0, measure
the average number of secondary infections caused by an infectious individual during his
or her entire period of infectiousness [18]. We calculated the basic reproduction number
by using the next generation operator approach by van den Driessche and Watmough [3].
The next generation matrix is given by:

F =




0
βHSκH

(κH + BH)2

βLSκL

(κL + BL)2

0 0 0
0 0 0


 , V =


 θ + µ + a + d 0 0

−ξ χ + w 0
0 −χ µP + w


 .
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Next, DFE E0 is substituted into F and V so that we obtain FV −1 as follows.

FV −1 =

 a11 a12 a13

0 0 0
0 0 0


 ,

with

a11 = �ξ(βHκL(µP + w) + βLχκH

κHκL(µ + v)(θ + µ + a + d)(χ + w)(µP + w)
,

a12 = (θ + µ + a + d)(χ + w) + (χ + w)(µP + w),

a13 = (θ + µ + a + d)(χ + w)(µP + w) − βL�χξ

κL(µ + v)
− βH�ξ

κH (µ + v)
(µP + w).

The basic reproduction number is the dominant eigenvalue of FV −1, thus we get

R0 = �ξ

(µ + v) (θ + µ + a + d)

(
βH

κH

1

(χ + w)
+ βL

κL

χ

(χ + w)

1

(µP + w)

)
. (3.7)

The biological meaning of this results are as follow. The term �/(µ + v) is the number
of susceptible population in disease free equilibrium. The term ξ/ (θ + µ + a + d) is
the average amount of hyperinfecious bacteria shed per individual. The term βH/κH

and βL/κL are the number of new cases per unit time generated by hyperinfectious
and less infectious bacteria, respectively. The term 1/ (χ + w) and 1/(µP + w) are
the expected times that bacteria remain in the hyperinfectious and less infectious states,
respectively, before they decay. The term χ/ (χ + w) is the product of the transition rate
of hyperinfectious to less infectious state and the expected times that bacteria remain
in the less infectious states. Finally, �ξ/(µ + v) (θ + µ + a + d) and �ξχ/(µ +
v) (θ + µ + a + d) (χ + w) are the average total amount of hyperinfectious and less
infectious bactera, respectively, shed into the environment. Thus, the first term in the
parenthesis is associated with the number of new infections caused by hyperinfectious
bacteria, and the second term is associated with new infections caused by less infectious
bacteria. The stability of system (2.1) is depend on the basic reproduction number.
Here, we state theorems regarding the local asymptotically stability of the disease free
equilibrium, E0, and endemic equilibrium, E∗.

Theorem 3.1. The DFE of the system (2.1), E0 is locally asymptotically stable when
R0 < 1, and unstable when R0 > 1.
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Proof. Jacobian matrix for DFE E0, JE0 given

JE0 =




−(µ + v) 0 0 − βH�

κH(µ + v)
− βL�

κL(µ + v)

0 − (θ + µ + a + d) 0
βH�

κH(µ + v)

βL�

κL(µ + v)

v θ + a −µ 0 0

0 ξ 0 − (χ + w) 0

0 0 0 χ −(µP + w)




and the characteristic polynomial of the matrix JE0 is

(λ + µ)(λ + µ + v)
[−(λ + θ + µ + a + d)(λ + χ + w)(λ + µp + w)

+ βL�χξ

κL(µ + v)
+ βH�ξ

κH (µ + v)
+ (λ + µp + w)

]
= 0

(3.8)

Thus, there are five eigenvalues and two of them are negative, that are λ1 = − (µ + v)

and λ2 = −µ. Meanwhile the three other eigenvalues are derived by solving the cubic
equation below

λ3 + a1λ
2 + a2λ + a3 = 0, (3.9)

with

a1 = θ + µ + a + d + χ + µP + 2w,

a2 = (θ + µ + a + d)(χ + w) + (χ + w)(µP + w)

+ (θ + µ + a + d)(µP + w) − βH�ξ

κH (µ + v)
,

a3 = (θ + µ + a + d)(χ + w)(µP + w) − βL�χξ

κL(µ + v)
− βH�ξ

κH (µ + v)
(µP + w).

The roots of the equation (3.9) are the other eigenvalues of characteristic polynomial
(3.8) namely λ3, λ4, λ5. Based on the roots properties of cubic equation, we gained
that the roots of equation (3.9) satisfy the following equations.

λ3 + λ4 + λ5 = −a1,

λ3λ4 + λ3λ5 + λ4λ5 = a2,

λ3λ4λ5 = −a3.

(3.10)

Because a1 > 0, then the sum of the three eigenvalues is negative. This denote one of
them must be negative, let λ3 < 0. Furthermore, to check the equilibrium stability, we
just need to notice the negativity of λ4 and λ5. Based on equation (3.7), R0 < 1 yields
a2 > 0 and a3 > 0. Thus, based on equations (3.10) the eigenvalues satisfy:

λ3(λ4 + λ5) + λ4λ5 > 0, (3.11)
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and
λ3λ4λ5 < 0. (3.12)

Because λ3 < 0 and condition (3.12) is satisfied, then we get

λ4λ5 > 0. (3.13)

Based on condition (3.13) and (3.11) we get

λ4 + λ5 < 0. (3.14)

Conditions (3.13) and (3.14) can be satisfied if and only if λ4 < 0 and λ5 < 0. Thus, we
know that all the eigenvalues are negative. Therefore, if R0 < 1, then DFE E0 is locally
asymptotically stable.

Further, we will show that if R0 > 1, then DFE E0 is unstable. Based on equation
(3.7), R0 > 1 causes a3 < 0, so that from equation (3.10) the product of the three
eigenvalues is positive. Then, because λ3 is negative, so, we get λ4 λ5 < 0. It means
that there is a positive eigenvalue. So, DFE of the system (2.1), E0 is unstable. Finally,
DFE of the system (2.1), E0 is locally asymptotically stable when R0 < 1, and unstable
when R0 > 1. �

3.2. Endemic dynamics

The endemic equilibrium of the model system (2.1) is denoted by

E∗ = (
S∗, I ∗, R∗, BH

∗, BL
∗) ,

with

S∗ = � − (θ + µ + a + d) I ∗

µ + v
, (3.15)

I ∗ = S∗

θ + µ + a + d

(
βHξI ∗

κH (χ + w) + ξI ∗ + βLχξI ∗

κH (µP + w) (χ + w) + χξI ∗

)
,

(3.16)

R∗ = vS∗ + (θ + a) I ∗

µ
, (3.17)

BH
∗ = ξI ∗

(χ + w)
, (3.18)

BL
∗ = χξI ∗

(µP + w) (χ + w)
. (3.19)

First, we show the existence of positive endemic equilibrium of system (2.1) which
is given as the following Theorem 3.2.

Theorem 3.2. A unique positive endemic equilibrium E∗ of system (2.1) exists if and
only if R0 > 1.
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Proof. Substituting equations (3.15), (3.18), and (3.19) into the second equation of sys-
tem (2.1), we can derive

A1I
∗3 + B1I

∗2 + C1I
∗ + D1 = 0, (3.20)

with

A1 = −(θ + µ + a + d)χξ2
(

βH + βL

µ + v
+ 1

)
,

B1 = �χξ2(βH + βL)

µ + v

− ξ(θ + µ + a + d)[βHκL(µP + w)(χ + w) + βLκHχ(χ + w)]
µ + v

− ξκL(θ + µ + a + d)(µP + w)(χ + w)

− κHχξ(θ + µ + a + d)(χ + w),

C1 = �ξ [βHκL(µP + w)(χ + w) + βLκHχ(χ + w)]
µ + v

− κHκL(θ + µ + a + d)(µP + w)(χ + w)2,

D1 = 0.

Based on the roots properties of cubic equation, the roots of equation (3.20) satisfy:

I ∗
1 + I ∗

2 + I ∗
3 = −B1

A1
, (3.21)

I ∗
1

(
I ∗

2 + I ∗
3

) + I ∗
2 I ∗

3 = C1

A1
, (3.22)

I ∗
1 I ∗

2 I ∗
3 = −D1

A1
. (3.23)

Because D1 = 0, then at least there is a zero root, let I ∗
1 = 0. Furthermore, based on

equation (3.7) R0 > 1 causes C1 > 0. So, the left side of equation (3.22) is negative. Thus
I ∗

2 I ∗
3 < 0. Therefore, a positive root I ∗ exists in this case. Consequently, BH

∗, BL
∗, S∗,

and R∗ are uniquely determined and positive.
Contrary, based on equation (3.7) if R0 < 1, then C1 < 0. Because A1 is negative

and C1 < 0, then the value of equation (3.22) is positive. Next, because I ∗
1 = 0, then

we have I ∗
2 I ∗

3 > 0. Meanwhile, based on equation (3.7), R0 < 1 causes

�ξ2χβH

(µ + v)
− ξχκH (θ + µ + a + d)(χ + w) < 0, (3.24)

and
�ξ 2χβL

(µ + v)
− ξκL(θ + µ + a + d)(µP + w)(χ + w) < 0. (3.25)
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From inequality (3.24) and (3.25) we get

�ξ2χ(βH + βL)

(µ + v)
− ξχκH (θ + µ + a + d) (χ + w) −

ξκL (θ + µ + a + d) (µP + w) (χ + w) < 0,

So that, B1 < 0 and then we have I ∗
1 + I ∗

2 + I ∗
3 < 0. Because I ∗

1 = 0, then I ∗
2 + I ∗

3 < 0.

Thus, we get I ∗
2 < 0 and I ∗

3 < 0, which is biologically nonfeasible. Therefore, a
positive endemic equilibrium doesn’t exist. By the same way, we can prove that if
R0 = 1, then equation (3.20) have two zero roots and a negative root, which is also
biologically nonfeasible. So, a unique positive endemic exists for the system (2.1) if and
only if R0 > 1. �

Based on Theorem 3.2, if R0 < 1, then all endemic equilibria E∗ are negative
(biologically nonfeasible). The following theorem declare that if R0 > 1, then endemic
equilibrium E∗ is locally asymptotically stable. This theorem is established by proving
that if R0 = 1, then bifurcation occurs. Bifurcation is qualitative change of equilibrium
stability of system because of varying parameter value.

Theorem 3.3. When R0 > 1, the endemic equilibrium of system (2.1), E∗, is locally
asymptotically stable.

Proof. We utilize Theorem 4.1 in [6]. Let

ϕ = βH�ξ

κH (µ + v)
(µP + w) + βL�χξ

κL (µ + v)
− (θ + µ + a + d) (χ + w) (µP + w) .

Based on equation (3.7), R0 = 1 causes ϕ = 0. Consider Jacobian matrix for DFE,
JE0 . DFE E0 have a zero eigenvalue and four negative eigenvalues when R0 = 1 or
ϕ = 0.The zero eigenvalue has right eigenvector (u1, u2, u3, u4, u5) and left eigenvector
(v1, v2, v3, v4, v5), with

u1 = −(θ + µ + a + d)(χ + w)(µP + w)

(µ + v)ξχ
u5,

u2 = (χ + w)(µP + w)

ξχ
u5,

u3 = (µ + v)(θ + a)(χ + w)(µP + w) − v(θ + µ + a + d)(χ + w)(µP + w)

(µ + v)ξχ
u5,

u4 = (µP + w)

χ
u5,
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u5 > 0,

v1 = v3 = 0,

v2 = κL(µ + v)(µP + w)

βL�
v5,

v4 = κL(θ + µ + a + d)(µ + v)(µP + w)

ξβL�
v5,

v5 > 0.

Defined

a =
5∑

k,i,j=1

vkuiuj

∂2fk

∂xi∂xj

(E0, 0),

b =
5∑

k,i=1

vkui

∂2fk

∂xi∂ϕ
(E0, 0),

with

x1 = S, x2 = I, x3 = R, x4 = BH, x5 = BL,

f1 = dS

dt
, f2 = dI

dt
, f3 = dR

dt
, f4 = dBH

dt
, f5 = dBL

dt
.

Based on system (2.1) we derive

a = 2v2u1u4
∂2f2

∂x1∂x4
(E0, 0)

= 2

(
κL(µ + v)(µP + w)

βL�
v5

) (
−(θ + µ + a + d)(χ + w)(µP + w)

(µ + v)ξχ
u5

)
(

µP + w

χ
u5

)
βH

κH

,

b = v2u2

(χ + w)(µP + w)
+ v2u4

ξ(µP + w)
+ v2u5

ξχ

+ v4u2κhκL(µ + v)2

βH�(µP + w)κL(µ + v) + βL�χκh(µ + v)
+ v4u4

(θ + µ + a + d)(µP + w)

+ v5u4κL(µ + v)(θ + µ + a + d)(µP + w)

βL�ξ − κL(µ + v)(θ + µ + a + d)(µP + w)
+ v5u5

(θ + µ + a + d) (χ + w)
.

Because u2, u4, u5, v2, v4, v5 > 0, then we obtain a < 0 and b > 0. Consequently, case
(iv) is the only one applicable for the system (2.1). This means that when ϕ changes from
ϕ < 0 to ϕ > 0, DFE E0 changes from stable to unstable and endemic equilibrium E∗
changes from negative to positive and becomes locally asymptotically stable. Therefore,
if R0 > 1, then endemic equilibrium E∗ is locally asymptotically stable. �
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Table 1: Model parameters and value

Parameter Value References
� 10/day [19]
µ 0.0000548/day [19]

d 0.015/day [19]
µp 0.0333/day [4]
βL 0.2143/day [4]
κL 106 cell/ml [4]
κH 1428.5714 cell/ml [4]

θ 0.2/day [4]
ξ 10/day [4]
χ 0.2/day [4]

4. Numerical Simulation

In this section, our objectives were to justify the stability properties of the equilibrium
points based on the theorem in section 3 and to see the influence of parameter variations
in dynamics system. Numerical simulation of system (2.1) are carried out using a set
of parameter values given in Table 1. Here, we used software Maple 13 to perform the
simulation.

In this case, the dynamics of human population and bacteria were analyzed by varying
controlled parameters, that are the rate of ingestion of hyperinfectious bacteria (βH ), the
rate of vaccination (v), the rate of treatment (a), and the death rate of bacteria because of
sanitation water (w). The dynamics of human populations and the bacteria is observed
when R0 < 1 and R0 > 1. In this case R0 is the basic reproduction number defined
in equation (3.7). The initial value used is S(0) = 1000000, I (0) = 10, R(0) =
0, BH (0) = 1000000, BL(0) = 1000000.

First simulation is when R0 < 1. We set the parameter value as given in table 1 with
βH = 0.1, v = 0.2, a = 0.05, w = 0.05 so that the condition R0 < 1 is satisfied.
It is found that there is a disease free equilibrium E0(S

0 = 49.98630375, I 0 = 0,
R0 = 182431.7655, BH

0 = 0, BL
0 = 0) with eigen value λ1 = −0.0000548, λ2 =

−0.2000548, λ3 = −0.44457759138, λ4 = −0.0686827432, λ5 = −0.08690893442,
which are all negative. It means that E0 stable when R0 < 1. Thus, Theorem 3.1 was
justified. Dynamics of human and bacterial population when R0 < 1 is performed in
Figure 1.

Figure 1 shows that the curveS, I, R, BH , BL asymptotically approaching the disease
free equilibrium point E0. Curve I that describes the infected population, at the beginning
of simulation, was contained in the population. In short time the curve increased, but after
a certain time, it decreased and towards to zero and stable. Similarly occur to curve BH

and BL, the two curves of bacteria initially increased, but over time BH and BL decline
until raises zero and stablized. The simulation results are consistent with Theorem 3.1
that if R0 < 1, then the disease free equilibrium point E0 is asymptotically stable, and
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Figure 1: Dynamics of human and bacterial population when R0 < 1.

by Theorem 3.2 that is if R0 < 1, then there is not positive endemic equilibrium point.
These results indicate that if the parameters of the model are setting to get R0 < 1, then
the cholera could be extinct because the population system will be stable at a disease
free equilibrium point.

Next, we performed simulation when R0 > 1. We set the parameter value as given
in table 1 with βH = 0.1, v = 0.02, a = 0.05, w = 0.05 so that the condition
R0 > 1 is satisfied. It is found that there is a disease free equilibrium E0(S

0 =
498.6337435, I 0 = 0, R0 = 181983.1181, BH

0 = 0, BL
0 = 0) with eigen value λ1 =

−0.0000548, lambda2 = −0.2000548, λ3 = 0.8481379864, λ4 = 0.3337531835,

λ5 = −0.08396999713, which are not all negative. It means that disease free equilib-
rium E0 is not stable when R0 > 1. Thus, Theorem 3.1 was justified, that is disease free
equilibrium E0 is asymptotically stable if and only if R0 < 1. Dynamics of human and
bacterial population when R0 > 1 is performed in Figure 2.

Figure 2: Dynamics of human and bacterial population when R0 > 1.

Figure 2 shows that the curve S, I, R, BH , BL asymptotically approaching the en-
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demic equilibrium point E∗. Curve I that describes the infected population, at the
beginning of simulation,was contained in the population, in short time the curve in-
creased, but after a certain time decreased, but but did not reach the zero point, and
then stabilized. Similarly occur to curve BH and BL, the two curves of bacteria initially
increased, but over time BH and BL declined but did not reach the zero point, and then
stabilized to positive point. In this case the system is stable at endemic equilibrium. The
simulation results are consistent with Theorem 3.1 that is the disease free equilibrium
point E0 is asymptotically stable if and only if R0 < 1, so that when R0 > 1 E0 is
unstable. It is also in accordance with Theorem 3.2 and Theorem 3.3 that if R0 < 1,
then there is a positive endemic equilibrium point and it is locally asymptotically stable.
These results indicate that if the parameters of the model (2.1) are setting to get R0 > 1,
then the cholera disease could not be extinct, otherwise the disease will always exist in
the population.

Furthermore, the effect of parameters variation to human infected is shown in the
following Figure 3. We varying the rate of ingestion of hyperinfectious bacteria (βH),
vaccination rate (v), treatment rate (a), and the rate of bacterial death because of sanitation
(w).

Figure 3: Effect of parameter variation to infected humans. (a) effect of the rate of
ingestion of hyperinfectious bacteria. (b) effect of vaccination rate. (c) effect of treatment
rate. (d) effect of bacterial death caused of sanitation.
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Variations of βH value associated with hygienic behavior of community and fre-
quency of meetings between susceptible with infected individuals (ex; using the same
river or toilet on the same day). When people behave less hygienic and there have
been many meetings between susceptible and infected individuals, then βH value will
be great. Based on Figure 3a we can see that increasing of the rate of hyperinfectious
bacteria which are ingested (βH ) causes the number of infected humans rise. This is
because the greater the value of βH , the greater the value of R0, which means more
difficult to overcome the outbreak of cholera. It means that to control cholera we should
consider hygienic behavior of community and public sanitation facility. Contrastly, Fig-
ure 3b, 3c, and 3d show that the increasing of vaccination rate (v), the treatment rate
(a), sanitation rate (w), causes the number of infected humans is on the wane. This is
because the higher the value of v, a or w, the lower value of R0, thus helping reduce the
rate of spread of cholera disease. Therefore, we offered any program to control cholera
should consider vaccination, treatment, and sanitation.

5. Conclusions

In this study we have modified mathematical model of the spread of cholera. The model
takes into account the presence of hyperinfectious state of bacteria and the influence of
vaccination, treatment, and sanitation. Model analysis shows that the model of cholera
transmission has two equilibria, that are the disease free equilibrium and endemic equilib-
rium. A unique positive endemic equilibrium exists if and only if the basic reproduction
number is greater than one. The number of individual subpopulations of humans and
bacteria is locally asymptotically stable around the disease free equilibrium if and only if
the basic reproduction number is less than one, and locally asymptotically stable around
endemic eqilibrium when the basic reproduction number is greater than one.

Numerical simulation results indicate that the increase of ingestion of hyperinfec-
tious bacteria will accelerate the outbreak of disease. While the increase in the rate of
vaccination, treatment, and sanitation will suppress the disease outbreak. Therefore,
we offered any program to control cholera should consider vaccination, treatment, and
sanitation.
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