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Abstract

We consider a hagher order of Korteweg-de Vnes (KdV) equation
which 15 an importamt water wave model, We find the approximate
analytical solution of the proposed model by Exponential Homotopy
Analysis Method (EHAM). By using this method, we solve the
problem analyncally and then compare the numerncal result with
exact solution, Numerical results reveal that the EHAM provides
highly accurate numenical solutons for higher order KdV equation.
The EHAM solubon  mcledes  an awahary  parameter. This
parameter provides a convenient way of adjusting and controlling the
convergence region of solution series,

. Introduction

There are many nonlinear partial differential equations which are quite

useful and applicable in engineering and physics such as the Korteweg-de
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Vres (KdV) equation. The KdV equation represents a first order
approximation m the study of long wavelength, small amphtude waves of
inviscid and incompressible fluids. Furthermore, if one allows the appearance
of higher order temms, then more complicated wave equafions can be
obtained. The higher order of KdV equation is generally difficult to be
solved and their exact solutions are difficult to obtain. Marinakis [11]
showed that the lgher order of KdV equaftion 1s integrable for a parficular
choice of its parameters, since in this case, it is equivalent with an integrable
equation which has recently appeared in the literature. During the last
century, asymptotic method [7] has often been used fo obtain approximate
analytical solution to these problems. These methods are typically dependent
on the presence of a small parameter, consequently, asymptotic methods
often fail to provide accurate results for large values of the parameters. In the
recent years, much effort has been spent on this task and many significant
methods have been established such as tanh-function method [5], integral
bifurcation method [13] and F-expansion method [3]). An extended F-
expansion method was proposed by Yomba m 2005 [2] by given more
solutions of the general subequation. Using the new method, exact traveling
solutions of higher order wave equation of KdV type are successtully
obtained [10]. A new analytic approach named Homotopy Analysis Method
(HAM) has seen rapid development. The basic idea of the HAM is to
produce a succession of approximate solution that tends to the exact solution
of the problem [9]. This methed has been successfully applied to solve many
types of nonlinear problems in dynamical flmd by many authors. Liao and
Cheung [8] successfully applied HAM in fully analytical way to nonlinear
wiaves propagation in deep water and the HAM solution in finite water depth
was obtamned by Tao et al. [6].

The goal of this paper has been to derive an approximate analytical
solution for the higher order wave equation of the KdV type. We have
achieved this goal by applying Exponential Homotopy Analysis Method
(EHAM). Results are compared with the exact solution.
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2. Evolution Equation

Based on the physical and asympfotic considerations, Fokas [1] derived
the following generalized KdV equations:

anan o @, 2 oadn &, e d’
= Hﬂar"'hax FPRTNT = o P:max Psaraxg

+parn’ +ulﬁ[p n z;' +pm%$+ pr %f} o

The function n{x, 1) represents the amplitude of the fluid surface with
respect to its level at rest, while p and & charactenize, respectively, the long
wavelength and short amplitude of the waves, compared with the depth of
the layer. Parameters p;, ¢ =1,2, 3 4, 5, 6, 7 are free parameters. Fokas
[1] assumed that (N&) is less than (Ap). According to this assumption,

we know that O(u8) < O(u?) and O(n28) < Apd). Neglecting two high

order infinitesimal terms of D{uE, uzﬁjl, equation (1) can be reduced fo
another high order wave equations of KdV type as follows:

211 2;1 +un§;1 +8 :1 +p Mz"'lzz;l +u5[|:r ﬂ§+ P3 E”—l‘;]— 0.(2)
Equation (2) is a special case of equation (1) for pgy =ps =pg =p7 = 0.
It p; = ps = p3 = 0, then equation (2) becomes the classical KdV equation.
Equation (2) is studied by many researchers and some useful results are
obtained when p;, i =1, 2, 3 takes special values. Equation (2) was examined
in [4] and it was found that it possesses solitary wave solutions which for
small values of the parameters u and &, behave like solitons. As mentioned
in [12], equation (2) 1s, i general, nonintegrable in the sense that some of 1ts
ordinary differential equation reductions do not possess the Painlevé propenty
and a Lax pair does not seem to exist. However, it was still found to possess
the traveling wave solution [ 10]:
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126B,(A° - 4B, )sech’(fBy (x - (¥ - xy))
w(48p2B; — (A - 24fB, tanh(fB;(x - Ct = xg )P

nix, 1) = (3)

when p; =0 and py = -2p,, where B = H+—L|1A2, C=1+468, 4

ra

and 5 are free constants, and x; bemng the arbitrary location of the center

of the wave. Equation (3) can be writen in the form of the well-known

sech’-soliton solution of the classical KdV equation:

_ 3 A1) L B A (O
11{1’11_u{—l+{f.'—l]pg]|5“h[Eﬂl 5 (x—C¥ Aﬂ]]

which is exactly the one-soliton solution of the KdV if ps =0 in which

case, equation (2) reduces exactly to the classical KdV equation [4] By
setting py = 2py, p3 = -2py. g # 0, the solufion of (2) 15

1258, (A% - 4B,)sech®(JfBi(x - Ct — %))
p(A = 2B tanh(fB; (x = Cr - )

(4)

nix, 1=

3. Approximate Analytical Solution

In this section, we implement the EHAM to the higher order wave
equation of KdV type. Making a transformation nix, 1) = ab(Z), with £ =
x = 1, equation (2) can be reduced to the following ordinary differential

equation:

{I—(}{Fi+un¢d¢ ¢ ‘a? {j‘h
i
+ uhrr[p h— ra + p3 iﬁ :Fq]J 0, (5)

where ' is the wave velocity which moves along the direction of x axis and
(' # 0. Suppose

O(C) ~ Dexp(-AL) as £ — oo, (6)
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where A > 0 and [ are constants. Substituting equation (6) into equation (5)
and balancing the main terms, we have

B IVF -1
b= —5
Defining £ = AZ, equation (5) becomes

3
(- 1]% + (0~ 1]% + nab % + pZa’e’ %

. do  db d%
+(C - 1]H0{P2¢E+P3 & £ =0, (7)

Assuming the nondimensional wave elevation ¢ arrives 1ts maximum at

the origin, we have the boundary condition as follows:
by _
¢(0) = 1, & (0)=10, d(=)=0. (8)

Then the solution can be expressed by the base functions
fexp(-nE)|n=1 23, .1}

in the form
0(2) = ) by expl-n2), (©9)
m=1
where b, is a coefficient to be determined. From equation (7), we define the

nonlinear operator N as

o de L dPD A 2 2.2
N(®, 4)= ~(C - ”Ff (€ - I}E+uﬂﬂ}ﬁ+plu a* D

a0
dg

. & dd d'D
+({—' - ]}HQ{PE[I} ii_‘,j T P3 ‘-'E- iﬁl]
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and the linear operator L is chosen as

47D
U A= 05 "

&

with the property [y exp(—-£)+ ChexplZ)+ C5) = 0, where ¢, 5 and
('y are constants. According to the boundary condition (8), the initial guess
is chosen as

Do(E) = Zexp(-E) - exp(-2£).

The EHAM is based on a continuous transform (d4{%, p), 4 p)), as the
embedding parameter p increases from 0 to 1, (®(E, p), A p)) vanes from
the initial guess () to the exact solution (§(), a). To ensure this, let

f = 0 denote an auxiliary parameter. We have the zeroth order deformation
equation

(1= p)UDE, p)-Dy(E)) = phN(DE, p), 4p)) (10)

subject to the boundary conditions
ki
m(“: F} = ]= E(ul P} = u: 'II-"[m, P} = 0.

Expanding ®(Z, p) and A p) in Taylor series with respect to p, we have

D, p)= Dy(E) + D bml(E)p™,
m=|

Ap) =dag+ Y dpp™,
m=1

where

1 "D, p)

¢m[§} = mi a:r_';'m

|P=ﬂ1
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_ 13" A(p)

T g |p=0-

m

MNote that equation (10) contains the auxiliary parameter /s, so that
M{E, p) and A4 p) are dependent on /. Assuming that h is so propedy

chosen that the series is convergent at p = 1, we obtain

BE) = DE, 1) = Dy(E) + Zd:m(_J

o0
a=Al)= ay + Zam.
=1

Differentiating equations (10) m times with respect to p, then setting
p =0 and finally dividing them by mi, the mth order deformation equation

£
Lom(E) = AmOm-1(E)) = 1By (G, ) (11)
subject to the boundary conditions

om(0) = %@ Om(2) = 0, (12)

where 3, =1for m =1, %, =0 and

_—{F l}dd’m I+uz[z .I'¢J' ,ﬂl‘bTEJ:— }

=0 j=0

3
+(C - ]]L’;'

. m-1 dd’j j i m—1-i
+ P z & Z dpd j_p Z O -1 —i—s
0 =0

=0\ _j=0
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m-1 1 3 2 |
HRC- ”[Z “;'[Pzd’f-;' ﬂ%:g_' +p3 C&JE_‘J a TEE’_' H

i=0 j=0

The solution of equation (11) is
Om(E) = CGexpl=E)+ Oy expl&) + C + 0, (5),

where E'm[ﬁ}l is a special solution of equation (11) with the unknown terms

1. According to the boundary condition (12) and equation (9), we have

(5=Cy3=0, € =-d,(0) and &, (0)+ ‘M’"T@ =0 (13)

which determine a,, .

4. Result and Discussion

Suppose mven the following data [4] w=1 o6 =001,  =1024,
pp =0 py =1L p3y=-Ip, By using equations (11), (12) and (13), we

successively obtain:
b1 = h()e ™ +ba(h)e ™ + by(h)e ™ + by(h)e
02 = di()e = +dy(h)e™ +dy(h)e ™ +dy(h)e ™
+ds(h)e™™ + dg(h)e
ag = 0.4741833513

ap = 0.0774935614h - 1.240779767 = 1077

a, = 0.0002959256h7 + 0.001665576212/ + 1.975763962 = 10~ 10

and so on. In the same manner, the rest of the components can be obtammed
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using the symbolic package. According to the EHAM, we can obtain the

solution 1n a series fomm as follows:
BE) = DolE) + dy(E) + d2(E) + 3(E) + dgll) + -,
a=dyg+ay+ay Fay+ag+ e (14)

The above series (14) contains the awaliary parameter # which influences the
convergent region. For different values of A, a converges to the same value -
the approximation of the exact solution. It can be seen n Figure 1, the neady
horizontal line segments of « — /& curves correspond to the convergence
regions of the b values. The valid region of / in this case is -2 < h < -1f2
as shown in Figure 1. The convergence region enlarges as more high order
terms are included in the series. Based on the above arguments, the auxiliary
parameter 1s chosen as # = =09 for all the EHAM solutions presented in

this section.

—_— jrdﬂf&r 'I -
...... 41&1 nrkr

Figure 1. The fi-curves of a by EHAM.
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The comparison of the EHAM solution and the exact solution is shown
in Figure 2. It can be seen in Figure 2 that the present EHAM solution is
almost identical with the exact solution. There exists a very good agreement
between EHAM solution and exact solution,

044

Figure 2. Comparison of the exact solution with the 6th order EHAM
solution of 1.

5, Conclusions

In this paper, EHAM has been successfully applied to find the
approximation analytical solution of the higher order wave equation of
Korteweg-de Vries. The convergence region 15 controlled by the non-zero
parameter, providing us a simple way to adjust convergence. The present
method holds promuse in providing fraveling wave solution for more

complicated wave equations.
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