

International Journal of Information Science and Computer Mathematics
© 2013 Pushpa Publishing House, Allahabad, India
Available online at http://pphmj.com/journals/ijiscm.htm
Volume 7, Numbers 1-2, 2013, Pages 65-81

Received: November 13, 2013; Accepted: December 30, 2013
2010 Mathematics Subject Classification: 68W40.
Keywords and phrases: algorithm, LLL, deep insertion, greedy SVP.

THE CONSTRUCTION OF GREEDY SVP LLL
ALGORITHM

Saiful Khair, Sugi Guritman and Bib P. Silalahi

Department of Mathematics
Bogor Agricultural University
Dramaga Raya, No 41 Ciherang
Bogor, Indonesia

Abstract

LLL algorithm is an algorithm used to compute the approximation of
the shortest nonzero vector in a basis of lattice. Terms of reduction
size and the exchanging process are the important steps in the LLL
algorithm. In 1994, Schnoor and Euchner modified this LLL algorithm
which later was named LLL Deep Insertion algorithm, where the
exchanging process in this algorithm scheme was comparing the
projection in the orthogonal complement after done a certain vector
reduction. This paper provides a new variant of LLL algorithm which
is named Greedy SVP LLL algorithm, that is, purely comparing
the- jb length (norm) of lattice vector with the- ib length of lattice

vector, for ,1...,,3,2,1 −= ji along with the vector insertion process

conducted greedily. Thereafter, the calculation of the number of
operation and testing for all three algorithms are conducted
experimentally.

1. Introduction

A lattice is a set of all integer linear combination of a set of linearly

Saiful Khair, Sugi Guritman and Bib P. Silalahi 66

independent vectors in .nR The independent vectors are called a basis of
lattice. Any lattice can be generated from many bases, and these bases have
the same cardinality [1].

The most fundamental and renowned problem is the Shortest Vector
Problem. Furthermore, the abbreviation SVP is often used in this paper. SVP
is a tracking problem of the shortest nonzero vector in a lattice with
equivalent basis. In two dimensions, SVP problem has resolved exactly by
Gauss’ algorithm. Research on the worst-case complexity of Gauss’
algorithm was conducted by Lagarias [3]. He showed this algorithm is
polynomial with respect to its input. The complexity of Gauss’ algorithm was
also investigated more deeply by Valley [7].

When the lattice dimension is higher than two, one has to defined
precisely as the idea of basis reduction. In 1982, Lenstra et al. gave a
reduction algorithm for lattice of arbitrary dimension. This algorithm is the
result of generalization of Gauss’ algorithm [1]. This algorithm is called LLL
algorithm. Reduced basis solution obtained from LLL algorithm still be an
approximation and has polynomial running time of arbitrary dimension
which large enough. Then, Schnoor and Euchner discussed the modified LLL
algorithm at exchange step for increasing the accuracy of LLL-reduced basis
output and applying it to the subset sum problem [6].

The purpose of this paper is constructing the Greedy SVP LLL
algorithm, which is a development idea of Deep Insertion algorithm, as well
as a new variant of the LLL algorithm. Furthermore, calculating the number
of involved arithmetic operation is conducted, and then experimentally
compared between LLL algorithm, LLL Deep Insertion algorithm and LLL
Greedy SVP algorithm.

2. Preliminary

Here are the basic concepts of the lattice.

Definition 2.1. Let { }nbbb ...,,, 21=B be a set of n linearly independent

vectors in vector space .mR The lattice that generated by B is a set of

The Construction of Greedy SVP LLL Algorithm 67

()
⎭⎬
⎫

⎩⎨
⎧ ∈= ∑ =

n
j jjj xx1 ZbBL which its elements consist of all integer

linear combinations of .B In this case, B is a basis for ().BL

Basis B for the lattice ()BL can be represented as matrix B sized nm ×

which its columns are the vector ,jb

()....21 nbbbB =

Then ()BL can be written as multiplication of matrix () { }.nxx Z∈= BBL

In this case, B is a matrix form of .B

Definition 2.2. Let { }nbbb ...,,, 21=B be a set of n linearly independent

vectors in .mR Then it can be constructed the subsequence of n mutually

orthogonal vector of { },...,,, 21
∗∗∗∗ = nbbbB where ,11 bb =∗ −=∗

jj bb

∑ −
=

∗μ1
1 ,

j
i iij b for nj ...,,3,2= and ., ∗∗

∗

⋅

⋅
=μ

ii

ij
ij

bb

bb

Definition 2.3. For ,...,,2,1 nj = projection function jπ of vector

space BB == ∗V to vector subspace { }∗∗
+

∗
njj bbb ...,,, 1 is defined as

() ∑ =
∗

∗∗

∗

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅

⋅
=π n

ji i
ii

i
j .b

bb
bvv If we take value of ,kbv = ,...,,2,1 nk =

then obtained

() ∑
∑

= −

=

∗∗

∗∗
∗∗

∗

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

>μ+

=

<

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅

⋅
=π

n

ji k

ji
ikik

ki
ii

i
kj

jk

jk

jk

.for,

,for,

,for,

1
bb

b

0

b
bb
bvb

3. LLL Algorithm

The definition of reduced basis δ is as follows:

Saiful Khair, Sugi Guritman and Bib P. Silalahi 68

Definition 3.1. A basis []nbbb ...,,, 21=B in mR is called LLL

reduced with parameter δ if it satisfies

(1) ,2
1≤μ ji for every integer i, j with ,1 nji <<≤

(2) () () ,2
1

2
+π≤πδ jjjj bb for ,1...,,2,1 −= nj

where δ is a reduced parameter of real numbers with .14
1 <δ<

The first requirement is the reduced basis δ must “nearly orthogonal”
and in its computation case, this requirement can be reached out by using the
Gram-Schmidt’s orthogonalization. While the second requirement is called
exchange step, or used to called as Lovasz condition, which can be rewritten

as () .2
1

22
,1

∗
+

∗
+ ≤μ−δ jjjj bb This inequality explained that Gram-

Schmidt’s vectors of LLL reduced basis must ordered decreasing with

decreasing factor .2
,1 jj+μ−δ If there is a pair of vector ()∗

+
∗

1, jj bb does not

follow the Lovasz condition, then the exchange between vectors will be
conducted and the orthogonalization process will be redone.

Algorithm 3.2 (LLL Algorithm)

Input: []nbbb ...,,, 21=B basis for ()BL and .14
1 <δ<

Output: []nbbb ...,,, 21=B is LLL reduced basis for ()BL and =∗B

[]∗∗∗
nbbb ...,,, 21 is the result of Gram-Schmidt’s orthogonalization process of

.B

(1) 11 : bb =∗

(2) 2:=j

(3) While nj ≤ do

(4) jj bb =∗ :

The Construction of Greedy SVP LLL Algorithm 69

(5) For 1: −= ji down to 1 do

(6) ∗∗

∗

⋅

⋅
=μ

ii

ij
ij

bb

bb
:,

(7) ∗∗∗ μ−= iijjj bbb ,:

(8) iijjj bbb kl ,: μ−=

(9) EndFor

(10) If (()) 22
1

2
1,

∗∗
−− >μ−δ jjjj bb then

(11) If 2=j then

(12) Swap 1b and 2b

(13) 21 : bb =∗

(14) Else 2>j then

(15) Swap 1−jb dan jb

(16) 1: −= jj

(17) EndIf

(18) Else

(19) 1: += jj

(20) EndIf

(21) EndWhile

4. Deep Insertion Algorithm

In the LLL algorithm, the test for exchange is well organized step by step
(),with 1−jj bb then by using the deep insertion method, this test can be

conducted directly into jb with kb for .1...,,2,1 −= jk Suppose that at a

certain computation phase, ordered basis lattice is obtained as follows:

....,,,,...,,,,...,,, 111121 njjjkkk bbbbbbbbb +−+−

Saiful Khair, Sugi Guritman and Bib P. Silalahi 70

The orthogonalization procedure of Gram-Schmidt is defined as =jb

∑ −
=

∗∗ μ+ 1
1 ,

j
i iijj bb for,,2,1 nj = Because of ∗∗∗

jbbb ...,,, 21 orthogonal,

then obtained ∑ −
=

∗∗ μ+= 1
1

22
,

22 .j
i iijjj bbb If jb is inserted into

,kb then the ordered basis lattice become

....,,,...,,,,,...,,, 111121 njjkkjk bbbbbbbbb +−+−

With fixed vectors ,...,,, 121
∗
−

∗∗
kbbb while the orthogonalization

procedure of Gram-Schmidt for kb is renewed as

,ˆˆ
1

1

1

1
,,∑ ∑

−

=

−

=

∗∗∗∗ μ+=⇔μ−=
k

i

k

i
iijkjiijjk bbbbbb

then

∑
−

=

∗∗∗ ⇔μ+=
1

1

222
,

22 ˆˆ
k

i
kiijkj bbbb

∑
−

=

∗μ−=
1

1

22
,

2 .
k

i
iijj bb (i)

For ,1−= jk then ∑ −
=

∗
−

∗∗
− ⇔μ−= 2

1
2

1
22

,
22

1 ˆˆ j
i jiijjj bbbb

.2
11,

2 ∗
−−

∗ μ+= jjjj bb For ,1−= jk the exchange step of deep

insertion method is equal to the exchange step of LLL algorithm, that is, if

,ˆ 2
1

2
1

∗
−

∗
− δ< jj bb then jb is swap with .1−jb Generally, for any value

of ,1...,,3,2,1 −= jk then equation (i) obtained as follows:

22
1ˆ jbb =∗

2
1

2
1,

22
2ˆ ∗∗ μ−= bbb jj

.ˆ 2
2

2
2,

2
1

2
2,

2
1

2
1,

22
1

∗
−−

∗∗∗
− μ−−μ−μ−= jjjjjjj bbbbb

The Construction of Greedy SVP LLL Algorithm 71

These equations can be used to state the value of k so that jb can be inserted

into .kb This can be happened if 22ˆ ∗∗ δ< kk bb and 2
1ˆ∗

−jb can be

calculated recursively with explanation as follows. Define initial jC b=

and ,1=k then recursively calculate 22
,

∗μ−= kkjCC b and 1: += kk

and the process end when 222 ˆ ∗∗∗ δ<⇔δ< kkkC bbb [2].

Algorithm 4.1 (LLL Deep Insertion Algorithm)

Input: []nbbb ...,,, 21=B basis for ()BL and .14
1 <δ<

Output: []nbbb ...,,, 21=B is a LLL reduced basis for ()BL and

[]∗∗∗∗ = nbbb ...,,, 21B is the result of Gram-Schmidt’s orthogonalization

process of .B

(1) 11 : bb =∗

(2) 2:=j

(3) While nj ≤ do

(4) jj bb =∗ :

(5) For 1: −= ji down to 1 do

(6) ∗∗ ⋅= iiiN bb:

(7)
i

ij
ij N

∗⋅
=μ

bb
:,

(8) iijjj bbb kl ,: μ−=

(9)
i

ij
ij N

∗∗
∗ ⋅

=μ
bb

:,

(10) ∗∗∗∗ μ−= iijjj bbb ,:

(11) EndFor

Saiful Khair, Sugi Guritman and Bib P. Silalahi 72

(12) jjC bb ⋅=: (Deep Insertion)

(13) 1:=k

(14) While jk < do

(15) ∗∗ ⋅= kkh bb:

(16) If hC δ< then

(17) If 1=k then

(18) Insert jb into 1st position

()njjj bbbbbb ...,,,,,, 1121 +−

(19) jbb =∗ :1

(20) Else

(21) Insert jb into kth position

 njjkjk bbbbbbbb ...,,,...,,,,...,,, 111121 +−+−

(22) jk bb =∗ :

(23) For 1: −= ki down to 1 do

(24) ∗∗ ⋅= iiiN bb:

(25)
i

ik
ik N

∗∗
∗ ⋅

=μ
bb:,

(26) ∗∗∗∗ μ−= iikkk bbb ,:

(27) EndFor

(28) EndIf

(29) Else

(30) ∗⋅= kjz bb:

(31) h
zCC

2
: −=

The Construction of Greedy SVP LLL Algorithm 73

(32) 1: += kk

(33) EndIf

(34) EndWhile

(35) 1: += jj

(36) EndWhile

5. Greedy SVP LLL Algorithm

The fundamental idea of greedy methods is as follows. If the smallest
vector is in the first position, then the insertion will occur only in the second
position or more; if two of the smallest vectors are ready in the first and
second position, then the insertion will only occur in the third position or
more, and so on. If the smallest vectors that are obtained by order are faster,
then the algorithm will be done as soon as possible. With this fundamental
idea, hoping these smallest vectors can be provided greedily. In this
algorithm, the exchange step (insertion) is not based on the comparison of the

projected vector in orthogonal complement []⊥−121 ...,,, kbbb after jth

reduction (deep insertion method), but the insertion that conducted purely by
comparing norm of lattice jb with norm lattice ib for .1...,,3,2,1 −= ji

Beside that, the insertion has done greedily.

Here are outline on how the algorithm works:

1. For [],1b defined ,11 bb =∗ find the vector jb of the reduction

result []1b and []∗1b toward []nbbb ...,,, 32 with the smallest norm.

If ,1bb <j insert ,...,,,,,, 1121 njjj bbbbbb +− then we

obtained the new jbb =1 and the process is repeated again. But if

,1 jbb ≤ then insert njjj bbbbbb ...,,,,,, 1121 +− so that

we obtained the new order of []21, bb with the smallest size in the

sequence. Then, compute ∗
2b from input 2b and ∗

1b so that we

obtained the sequence []∗∗
21, bb and continued to the second step.

Saiful Khair, Sugi Guritman and Bib P. Silalahi 74

2. From []21, bb and [],, 21
∗∗ bb find the vector jb as the reduction

result of []21, bb toward []nbbb ...,,, 43 with the smallest norm. If

,1bb <j insert njjj bbbbbb ...,,,,,, 1121 +− or if ≤1b

,2bb <j insert njjj bbbbbb ...,,,,,, 1121 +− then back to

the first step. But if jbb ≤2 insert ,,,,, 1321 −jj bbbbb

nj bb ...,,1+ so that we obtained the new order of []321 ,, bbb with

the smallest size in the sequence. Then compute ∗
3b of input 3b and

[]∗∗
21 , bb so that we obtained the sequence []∗∗∗

321 ,, bbb and continued

to the third step.

3. Generally, the kth of []kbbb ...,,, 21 and [],...,,, 21
∗∗∗
kbbb find

the vector jb as the reduction result of []kbbb ...,,, 21 toward

[]nkk bbb ...,,, 21 ++ with the smallest norm. Then insert jb to

[]....,,, 21 nbbb If the insertion format kj bbbb ...,,,, 21 or

kj bbbb ...,,,, 21 then back to the first step, and if the insertion

format kiji bbbbbb ...,,,,...,,, 121 − so that we obtained the new

[],...,,, 21 ibbb then from ib and []∗
−

∗∗
121 ...,,, ibbb compute ∗

ib to

provide the new [],...,,, 21
∗∗∗
ibbb then back to the ith step. But if the

insertion format ,,...,,, 21 jk bbbb then we obtained the new order

[]121 ...,,, +kbbb with the smallest size in the sequence. Then,

compute ∗
+1kb of input 1+kb and []∗∗∗

kbbb ...,,, 21 so that we obtained

the sequence []∗
+

∗∗
121 ...,,, kbbb and continued to the ()1+k th step.

4. And so on, and the process terminated when .nk =

Algorithm 5.1 (Greedy SVP LLL Algorithm)

Input: []nbbb ...,,, 21=B basis for ().BL

The Construction of Greedy SVP LLL Algorithm 75

Output: []nbbb ...,,, 21=B is the LLL reduced basis for ()BL and

[]∗∗∗∗ = nbbb ...,,, 21B is the result of Gram-Schmidt’s orthogonalization

process of .B

(1) 11 : bb =∗

(2) 1:=k

(3) While nk < do:

(4) Variable initial for []kbb ...,,1 and []nk bb ...,,1+

(5) While kn − do:

(6) 1: += ky bb

(7) For kl = down to 1 do

(8) ∗∗

∗

⋅

⋅
=μ

ll

ly
ly

bb

bb
:,

(9) llyyy bbb kl ,: μ−=

(10) Endfor

(11) Compute yb

(12) 1:=i

(13) For knj −= ...,,3,2 do:

(14) Defined jb

(15) For kl = down to 1 do

(16) ∗∗

∗

⋅

⋅
=μ

ll

lj
lj

bb

bb
:,

(17) lljjj bbb kl ,: μ−=

(18) Endfor

(19) Compute jb

(20) If yj bb < then

Saiful Khair, Sugi Guritman and Bib P. Silalahi 76

(21) jy bb =:

(22) jy bb =:

(23) ji =:

(24) Endfor

(25) Defined []nk bb ...,,2+

(26) 1: −−= knm

(27) 1: += kb

(28) For 1=z to k do

(29) Compute zb

(30) If zy bb < then

(31) zb =: (the position of vector yb swap with the

position of vector)zb

(32) Break (Stop loop)

(33) Endif

(34) Endfor

(35) If position ky bb ≤ then

(36) If 1=b then

(37) Defined 1:=k

(38) ky bbbb ...,,,, 21

(39) ∗= 1: bb y

(40) Else

(41) kzyz bbbbb ...,,,,...,, 111 +−

(42) Defined yb

(43) For kl = downto 1 do

The Construction of Greedy SVP LLL Algorithm 77

(44) ∗∗

∗

⋅

⋅
=μ

ll

ly
ly

bb

bb
:,

(45) ∗∗∗ μ−= llyyy bbb ,:

(46) Endfor

(47) Updated ∗∗
+

∗
kzy bbb ...,,, 1

(48) bk =:

(49) Endif
(50) Break (Stop loop)
(51) Endif

(52) Updated []yk bbbb ,...,,, 21

(53) Defined yb

(54) For kl = downto 1 do

(55) ∗∗

∗

⋅

⋅
=μ

ll

ly
ly

bb

bb
:,

(56) ∗∗∗ μ−= llyyy bbb ,:

(57) Endfor

(58) Updated ∗∗∗
ybbb ...,,, 21

(59) Updated ∗∗∗
nbbb ...,,, 21

(60) 1: += kk

(61) End While

(62) Updated []nkk bbbb ...,,,...,, 11 +

(63) EndWhile

6. Speed Analysis and Implementation

Calculating the number of operation and complexity in the constructed
Greedy SVP LLL algorithm are explained here. The algorithm begins

Saiful Khair, Sugi Guritman and Bib P. Silalahi 78

with the first vector initial as orthogonal vector, continued by assignment
operation in the value .1:=k Then, initialization is done onto two variables
to divide the column vector that is in the matrix of k value assignment.
Initialization process in this step (4) is intend to compare vector one by one
that is in the 2 variable. Entering into loop “while” that will repeated kn −
times, with value of n is the inputted matrix dimension.

Furthermore, the algorithm will compute the number of involving in
the size reduction. The number of existing operations in Algorithm 5.1((6)-
(10)) is as follows:

(1) An assignment operation as initial statement for yth vector that
wanted to be reduced.

(2) There are block of statement “for” which are repeated as many as
k-times.

(a) There are 2 assignment operations.

(b) There are 3 vector multiplication, 1 subtraction, 1 division, and 1
rounding operation to the closest integer.

The complexity in the block of reduction size is ().nO After this block,

the value of norm is calculated from reduced vector that given in a certain
variable, then initialized by a certain variable i. The complexity for this step
is ().nO

In the steps (13)-(24), statement block initially by looping for reduction
size for 2+k th vector up to nth vector. The number of operations for this
block as follows:

(1) Block for reduction size that using the same steps as steps (6) to (10)
with the same complexity, that is ().nO

(2) Compute every norm of reduced vectors for 2+k th vector up to nth
vector. Then, there is one branching in this block, where there is inequality
for comparing the norm of reduced vector in step (6), to get the shortest one.
In this block, there are 3 initialization, each of exchange position of vector
with the shortest norm.

The Construction of Greedy SVP LLL Algorithm 79

The complexity of this block is ().2nO

In the steps (25)-(27), assignment operation for 2+k th vector up to nth
vector, and variables m and b stating the vector position. The complexity in
this step is ().1O

Furthermore, the steps (28)-(34) are looping to calculate the norm of
vector position 1 to the kth vector and there is statement “if” where the
smallest vector of the reduction result in the step (13) is compared by its
norm. If this condition satisfies, then the vector position will be exchanged to
the kth vector position. The complexity of this step is ().nO

In the steps (35)-(52), there is branching block which allows to insert
vector with the smallest norm to take the first position, or vector position that
inserted between the first vector and the kth vector. If this condition satisfies,
then the sequence that contains the smallest vector can be calculated its
orthogonal vector by using the Gram-Schmidt’s orthogonalization. This
vector is passing through the long enough path way after passing the step
(35) then turn we will go to the step (43) and end with the last step (50). The

complexity in this step is ().2nO

Furthermore, in the steps (53)-(58), initialed by vector initialization that
is not included in the branching condition, to calculate its orthogonal vectors.
The details of the number operation in the statement block this “for” are:

(1) 2 initialed operation.

(2) 1 division, 3 multiplication vector, and 1 subtraction operation.

The complexity of this block is ().nO The last step is adding the index k

then back to the step (3) and combining the latest result of the vector that has
been reduced and exchanged with its orthogonal vector.

In addition to counting the number of operation and complexity on the
parts of algorithm, and the test towards LLL algorithm, deep insertion
algorithm, and Greedy SVP LLL algorithm also conducted. The testing is
done by inputting the integer matrix size nn × for 80...,,20,10=n with

Saiful Khair, Sugi Guritman and Bib P. Silalahi 80

.4
3=δ The output are the integer matrix size nn × as the result of reduced

LLL and the result of matrix Gram-Schimdt’s orthogonalization. To obtain
the value of running time, run those algorithms for each matrix size as many
as 5 times and calculate the average of it. Here is the result:

Table 1. Matrix size nn × versus running time (sec) with 43=δ

Matrix size
Algorithm

1010 × 2020 × 3030 × 4040 × 5050 × 6060 × 7070 × 8080 ×

LLL 0.059 1.207 8.234 13.104 33.712 83.034 93.544 388.099

Deep
Insertion

0.072 1.763 13.625 64.659 136.485 401.216 651.058 2126.497

Greedy SVP
LLL

0.044 1.061 7.132 7.226 17.634 34.617 83.408 139.385

It can be presented in the graphic as follows:

Matrix Size (n x n)

10 x 10 20 x 20 30 x 30 40 x 40 50 x 50 60 x 60 70 x 70 80 x 80

R
un

ni
ng

 T
im

e
(s

ec
)

20

520

1020

1520

2020
Greedy SVP LLL
DI
LLL

Figure 1. The comparison of running time (sec) versus matrix size .nn ×

The Construction of Greedy SVP LLL Algorithm 81

7. Conclusion

With increasing in matrix size, the running time of the three algorithms
has increased. The result of comparing experimentally shows that by using

4
3=δ for the LLL algorithm and the deep insertion LLL algorithm, and the

Greedy SVP LLL algorithm which is a new variant made by using no
parameter of δ, outperform of the other of two algorithm in terms of speed
with the same output.

References

 [1] Ali Akhavi, The optimal LLL algorithm is still polynomial in fixed dimension,
Theoret. Comput. Sci. 297 (2003), 3-23.

 [2] M. R. Bremner, Lattice Basis Reduction: An Introduction to the LLL Algorithm
and its Application, CRC Press, New York, 2012.

 [3] J. C. Lagarias, Worst-case complexity bounds for algorithms in the integral
quadratic forms, J. Algorithms 1 (1980), 142-186.

 [4] A. K. Lenstra, H. W. Lenstra and L. Lovasz, Factoring polynomials with rational
coefficients, Math. Ann. 261 (1982), 515-534.

 [5] D. Micciancio and P. Voulgaris, Faster Exponential Time Algorithms for Shortest
Vector Problem, SIAM, 2011, pp. 1468-1480.

 [6] C. P. Schnoor and M. Euchner, Lattice basis reduction: improved practical
algorithms and solving subset sum problems, Math. Program. 66 (1994), 181-199.

 [7] B. Valley, Gauss algorithm revisited, J. Algorithms 12 (1991), 556-572.

