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Abstract— The microorganism samples taken
directly from environment are not easy to
assemble because they contains mixtures of
microorganism. If sample complexity is very high
and comes from highly diverse environment, the
difficulty of assembling DNA sequences s
increasing since the interspecies chimeras can
happen. To avoid this problem, in this research, we
proposed binning based on composition using
unsupervised learning. We employed trinucleotide
and tetranucleotide frequency as features and
GSOM algorithm as clustering method. GSOM
was implemented to map features into high
dimension feature space. We tested our method
using small microbial community dataset. The
quality of cluster was evaluated based on the
following parameters topographic  error,
quantization error, and error percentage. The
evaluation results show that the best cluster can be
obtained using GSOM and tetranucleotide.

I INTRODUCTION

MIEI'A(i[ZNUMI(‘S is a study of analyzing high

complexity of microbial community which
allows culture — independent [1], [2]. As we Know.
only 1% of microorganism can be cultured by
standard cultivation techniques. The rest should be
taken directly from the environment, named as
metagenome sample. This kind of sample contains
mixtures of microorganisms. This characteristic
makes assembling process becomes more difficult
because it will yield more interspecies chimeras [5].

To solve the problem, we used binning process
before or after assembling metagenome fragments.
Binning is a techniques to classify or cluster organism
based on taxonomy [5]. [6].

There is two binning approach. the first approach is
binning based on homology such as BLAST [7]. [8]
and MEGAN [9]. The second one is composition
based approach. The composition approach applied
unsupervised learning and supervised learning as a
method and oligonucleotide as an input in the
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features spaces. There are many application
developed based on this approach. Some applications
that employed unsupervised leaming are TETRA
[10], Self Organizing Clustering [11], Self Organizing
Map [12], and Growing Self Organizing Map [1],
[13]. The ones that used supervised learning are
PhyloPythia [14]. Naive Bayessian Classification
[15]. and Phymm [16].

One of researches used GSOM combined with
oligonucleotide to explore the genome signatures.
Clear species-specific separation of sequence was
obtained in the > 8 kbp fragments test. The fragments
were derived from 30 species, which is separated into
3 dataset, 10 species perset [1].

In this research, we employed binning based on
composition with unsupervised learning. We proposed
1 kbp DNA sequence derived from 18 species. We
reads the fragments uniformly. The previous research
[1] used long fragments (8 kbp). Using short length (1
kbp) gave a poor performance [5], [17]). In this
rescarch, we will overcome the limitation of using
short fragment. The purpose of this research is to
know the performance of GSOM in clustering the
metagenome fragments with short fragment (1 kbp
fragment lenght).

1. MATERIAL AND METHODS

Growing Self Organizin Map (GSOM)

GSOM consists of 3 main phase (Figure 1). which
were initialization phase. growing phase and
smoothing phase [18]. [19].

Initialization phase

In this phase. the algorithm initialize four starting
nodes. Four starting nodes which were randomly
selected from the input dataset. The initialization
nodes were shown in Figure 2.

Next the global parameter, Growth Threshold (GT)
was calculated for the given dataset according to the
user requirement. The GT value is defined as :
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GT = —D x Ing5F)

Where D is dataset dimension, SF is Spread Factor.
SF value was determined by user and SF took the
values between zero and one.

GSOM PHASE

SETTING
Spevad §acwn

4
|
17,
Girewing
rhaswe — — Untorm g rudes
|
L

Smeoxsting

SCALING
- Dats o ferma o

Werght Iniuahirton
lopographic xtw - Map

A varimg moc s

. P amat nomber o e
Pl

Fig | GSOM phase Contains three phase which are initalisation
phase (muahsaton 4 starung nodes). growing phase
(nodes 1s growing) as a important phase, and smoothing
phase (final number of nodes)

HNewon Postons

)

e

PSP ED NP

puaon(]

%l L (e 0s o=
pciatordl 1

e

big 2 imuoalization starting node  The valuces 1s between one and

sero. randomly

Grovwing phase

Growing phase is the most important phase in
GSOM mcthod. beacause in this phase the map would
be set as dynamic to overcome the limitation of static
map structure of SOM. Below is the pseudocode of
crowing phase in performing metagenome fragments
clustering shown in Figure 3.

Error values 1s the distance between the input and
winner node The growth process depended on the
growth threshold. When a node 1s not in the boundary
of the network, it cannot grow new neighbors due its
position
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Fig 3 Pseudo code of growing phase

neighborhood parameter would be decreased. This
parameter changed in every iteration. When the
minimum level is reached, the value would be close to
7ero.

Compared with the previous work by Chan et al [1].
we used | kbp fragments lenght instead of 8 kbp
Using short fragments increased the complexity of
clustered microorganism and made the project more
difficult, since it always caused fragments to overlap
and made being fragments
assembling.

them mistaken in

Because of that, in this research we transformed the
features extraction result to 0 — 1 values. The data
transformation was used to reduce the data vaniation
and helped to increase the level of truth

RIS
Fhe proposed binning method was tested on
simulated  metagenome  fragment  generated by

MctaSim [20]) The simulated datasct of microbes
DNA sequence was randomly sampled from NCBI
database [21] In this research. we randomly took 18
microbes: 9 microbes for data training and 9 microbes
for data testing with 1 kbp fragment length and then
clustered mto 3 different phylum. Proteobacterit.
Bacrerondetes. and Chlamydiae: respectively. Each <t
of the genome sequence was separated into two orders
(trinucleotide  and
tetranucleotide frequency) We set the Spread Facter

of  oligonucleotide  frequencies
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0.6 for tninucleonde for
tetranucleotide frequency.

The simulated dataset was extracted by k-mer
frequencies method 1o get the specific oligonucleotide
frequency and to put it in the composition matrix.
After extracting, each of the dataset was scaled to
obtain a dataset between zero and one. After scaling,
we separated the dataset into data training and data
testing (Table | and Table 1), We used data training
to obtain the trained model and used data testing to
evaluate the GSOM algorithm. The flowchart of

TABLLE L
DATATRAINING

frequency and 0.8

] Microbes

Aaditiobacillus fenvorans 883 chromosome
Bunchnera aphidicola (Cinara tujutilina)
chromosome

3 Burkholdena glumae BGR 1 chromosome |

4 Hlatabacternium sp (HBlaberus giganteus)

(]

chromosome
5 Flavobacterium branchiophilum FL-13
6 Prevotela denticola FO289 chromosome
7 Chlamsdia mundarum Nigg
X Chlamsdophila tehis Fe'C-39
Y Simhkania negevensis / chromosome

chromosome gsn 131

TABLE N
DATA TESTING

] Microbes

1 Brevundimonas subvibriodes ATCC 15264
chromosome

2 HBrucella camis ATCC chromosome |

3 Rhizobum eth CEN 42

4 Hacterondes fragihis 638R

hi Prevotella melamnogenica ATCC 25845
chromosome |

6 Presetella rumamicola 23 Chiomiosonie

7 Chiamydophila ppcumomae AR3Y

R Parachlamydia acanthaanmocbae L'V-7

chromosome
9 Waddha chondrophila WS B6-1044
chromosome

GSOM  algorithm  for  clustering
fragments are shown in Figure 4.

To evaluate the clustering performance. we used
topology preservation (topographic error). mapping
precision (quantization error) and error percentage
[22]. [23]. We also used time parameter to calculate
the efficiency.

Quantization error iIs a COmmon error measurement
that measure the average distance between each data
vector and its Best Matching Umit (BMU). Definition
of BMU is a a randomly sampled vectors tha count
the nearest distance between vectors [22] Shortly,
quantization error measure the mapping precission
between input vector X1 and nearest weight vector

m
: Zu‘ I
e= — Xi - my:
q N
4

metagenome

l'—l'

ISBN: 978-979-1421-19-5

The expected map is obtained when the value of ge

End |

Fig 4 Analysis procedure clustening metagenome fragments
using GSOM algonthm
FABLE I
METAGENOME FRAGMENTS ANALYSIS VALUE

g Fonucleonde Tetranucleonde

Topographic

0067 0 066
error
()
Juantizahon 1304 0742
crror
I rror percentage IR 74%, 18 4R°,
Time (scc) 60K) 2880

reached the minimum value.

To measure the topology preservation, we use
topographic error. The topographic crror considered
the map structure and explained the correspondence
between input data. This error measures the
proportion of all data vectors for which first and
second BMU are not adjacent vectors [22].

N
1 —-
te = EZ u(xt)
=]
Where u(.r—ﬁ = 1 if X1 data vector first and second
BMUs are adjacent and 0. otherwise.

The crror percentage used in this research was
calculated based on the result of misclassification of
the metagenome fragments data.

From the analysis result (Table [11). we can see that
both trinucleotide and tetranucleotide gave a good
results. The error percentages were almost the same
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We use 0 6 SF value to control the ncuron growth. Map
stop growing in 28 x 13 map size

with the values of 18. 74% and 1848 %o for using
trinucleotide and tetranucleotide, respectively.  This
tendency was also shown by topology preservation
Both of oligonucleotide
topographic error of 0.067 for trinucleotide frequency

frequencies  gave the
and 0.066 for tetranucleotide frequency.

However both topograhic error result were enough
to prove that eversy BMUs in the map grid was not
adjacent vectors. It showed that both maps gave a
quite good map preserve to clustering a metagenome
fragments.

Moreover by analyzing their quantization error, we
can conclude that tetranucleotide gave better cluster
than trinucleotide. Tetranucleotide frequency gave a
mapping precision result of 0.742, better than that of
trinucleotide frequency which s 1 304 1t means that
clusters constructed using tetranucleotide frequency
feature are more dense. We also showed the mapping
results using tninucleotide frequency (Figure 5) and
using tetranucleotide frequency (Figure 6)

IV, CONCLUSION

Our  method. GSOM  and  ohgo-
nucleotide can show a good performance 1n clustering
metagenome fragments in phylum level with shont
fragment (1 kbp). The results showed that the
performance of clustering using tetranucleotide was
better than using trinucleotide.  The error percentage
result of using tetra-nuclcotide is 18 48%¢ and the
quantization was 0472
nucleotide Marcover, the topographic error 1< small

combining

error less than using tni-
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