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Abstract 

The use of interior-point methods to solve linear optimizarion 

problems has become a great attention to the researchers. The most 

important thing is that the interior-point methods have the best 

complexiry compared to other methods and also efficient in practice. 

The worst upper bound for the iteration complexiry of this method 

is polynomial. Roos, Terlaky and Vial presented an interior-point 

method using primal-dual full-Newton step algorithm that requires the 

best known upper bound for the iteration complexiry of an interior. 

point method. In Lhis paper, we present their method with a slightly 
better iteration bound . 

1. Introduction 

Recently, the use of interior-point methods (IPMs) for solving linear 
Rece1vcd~July 8, 2014; Revised: August 20, 2014; Accepted: September J. 2014 
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· optimization (I:.0) problems has become a major concern of the optimization 

researchers. This happens mainly due to the fact that interior-point methods 

have polynomjaJ complexity, which is the best compared to other methods 

and these methods are also efficient in practice. 

Interior-point method first appeared in 1984, when Karmarkar [4] 

proposed a polynorrual-time method for LO problems. In the worst-<:ase, for 

a problem with n inequalities and L bits of input data, Karmarkar's algorithm 

requires O(n3
·
5 L) arithmetic operations on numbers with O(L) bits. 

In [8], Renegar improved the number of iterations to 0( ,/; L) iterations. 

Other variants of IPMs, called potential reduction methods, require also only 

o(.J;iL) iterations. This was shown by Ye [13], Freund [I], Todd and Ye 

[12] and Kojima et al. [5]. 

Sonnevend [ 11] and Meggido [ 6] introduced a class of IP Ms which uses 

the so-<:alled central path as a guide line to the set of optimal solutions. These 

methods are called path-following methods. A variant of path-following 

methods was presented by Gonzaga (3], Monteiro and Adler [7] and Roos 

and Vial [I 0). Their methods require 0( ..In l) iterations, which is the best 

known upper bound for the iteration complexity of an IPM. Roos et al. in 

their book (9) obtained the same upper bound by using an algorithm which is 

a so-called primal-dual full-Newton step algorithm. Their upper bound for 

the number of iterations is 

rEn1nn~
0

i. (I.I) 

where t is the absolute accuracy of the objective function and µ0 > 0 

denotes the initial value of the so-called barrier parameter. 

In this paper, by careful analysis, we reduce the upper bound by a factor 

~. The iteration upper bound that we obtained is 

r ..r;; log n~o l 

·~ 
Sharper Analysis of Upper Bound for the Iteration Complexity 

2. Primal-dual IPM with Full-Newton Steps 

The standard fonn of an LO problem is as follows: 

min{cT x : Ax == b, x ~ O}, 

71 

(P) 

where c, x e '.Rn, b e '.Rm and A e '.J?.mxn. Any LO problem can be 

transfonned into standard form, by introducing additional variables (2). The 

problem (P) is often called the primal problem. Associated with any LO 

problem is another LO problem called the dual problem, which consists of 

the same data {A, b, c) arranged in a different way. The dual of (P) is 

max{bT y : AT y + s = c, s ~ 0}, (D) 

where s e J<n and y e '.Rm; (D) is called the dual problem. 

The feasible regions of (P) and (D) are denoted by P and V, 

respectively. The (relative) interiors of P and V are denoted by P 0 and V 0 • 

Finding an optimal solution of (P) and (D) is equivalent to solving the 
following system (9): 

Ax== b, x ~ 0, 

T 
A y + s = c, s ~ 0, 

xs=O, (2. 1) 

where xs is the component-wise (or Hadamard) product of the vectors x ands 

and 0 denotes the zero vector. The first line in (2. 1) is s imply the feasibility 

constraint for the primal problem (P) and the second line represents the 

feasibility constraint for the dual problem (D) . The last equation is the so
called complementarity condition. 

By u~ing path-following IPM, the complementarity condition in (2.1) 

is replaced by xs = µe, where µ is any positive number and e is the a ll-one 

vector. This new constraint is referred to as the centering condition with 
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respect to µ . The resulting system is 

Ax= b, x ~ 0, 

T A y + s = c, s ~ 0, 

XS= µe. (2.2) 

If system (2.2) has a solution for some µ > 0, then a solution exists for 

every µ > 0 [9). This happens if and only if interior point condition (IPC) is 

satisfied. The solutions are denoted as x(µ), y(µ) and s{µ). We call x(µ) 

the µ-center of(P) and (y(µ), s(µ)) the µ-center of(D). 

When µ runs through (0, oo), then x{µ) runs through a curve in P
0 

which is called the central path of (P). Similarly, the set {(y(µ), s(µ)) : 

µ e (O, oo)} is called the central path of(D). Ifµ-+ 0, then x(µ), y(µ) and 

s(µ) converge to a solution of (2.1 ), which means that the central path 

converges to the set of optimal solutions of (P) and (D). On the other hand, if 

µ --. oo, then x(µ) and (y(µ), s(µ)) converge to the so-called analytic center 

of (P) and (0), respectively. 

Next, it will describe how Newton 's method can be used to obtain an 

approximate solution of system (2.2), for fixed µ . Given a primal-dual 

feasible pair (x, (y, s )}, we want to define search direction tu, fly and t:.s 

such that (x + flx , y +fly, s + t:.s) satisfy (2.2). 

Since Ax = b and Ary+ s = c, system (2.2) is equivalent to the 

following system: 

A~x = 0, 

AT fly + t:.s = 0, 

stu + xt:.s + tu!:Js = µe - xs. 
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The third equation is nonlinear, due to the quadratic tenn t:.xt:.s. By 

neglecting this quadratic tenn, according to Newton's method for solving 

nonlinear equations, we obtain the linear system 

Atu = 0, 

AT fly + t:.s = 0, 

stu + xt:.s = µe - xs. (2.3) 

The resulting directions of (2.3) are known as the primal-dual Newton 

directions. By taking a step along these directions, one finds new iterates 

(x +, (y +, s + )) such that x + and s + are positive. The new iterates are given 

by 

+ + + x = x +tu, y = y + fly , s = s + t:.s. 

In the process of following the central path to the optimal solution, 

by using Newton steps, we generate a sequence of points within the 

neighborhood of central path. We need a quantity to measure the proximity 

of (x, (y, s)) to the µ-center. 

Before defining this proximity measure, we refonnulate the linear system 

(2.3), by scaling tu, fly and t:.s to d.x, d .
1
• and ds as follows: 

d - vt:.x x ---
x ' 

where 

fly 
dy = -iµ· 

v=J!f. 

d - vt:.s s - -s ' 

lfwe define D = diag(J;/S), then system (2.3) is equivalent to 

ADd.x = 0, 

(AD)T d y + ds = 0, 

d.x + ds = v- I - v. (2.4) 



74 Bib Paruhum Silalahi 

The first two equations of system (2.4) show that the vectors dx and ds 

belong to the null space and the row space of the matrix AD, respectively. 

These two spaces are orthogonal, therefore, dx and ds are orthogonal. The 

orthogonality of dx and d5 implies 

II dx ~ 2 +II ds ~2 =II dx + ds 112 

=llv-1-vf 

Note that dx , ds (and also dy) are zero if and only if v-1 
- v = 0, which 

happens only if v = e, and then x, y and s coincide with the respective 

µ-centers. Therefore, to measure the 'distance' of (x, (y, s )) to the µ-center, 

we use the quantity O{x, s; µ) defined by 

o(x, s; µ) := o{v) := t~ v- 1 
- v f (2.5) 

For any t ~ 0, the t-neighborhood of the µ-center is given by the set 

{{x, y, s): x E 'P, (y. s) EV, o(x. s; µ) :5 <}. 

After a full-Newton step, the duality gap at the new iterates always 

assumes the same value as at the µ-centers, i.e., (x +)Ts+ = nµ (cf. [9, 

Theorem 11.47]). An IPM with full-Newton steps can be described as in 

Figure 1. 

Primal-dual IPM with full-Newton steps 

Input: 

an accuracy parameter E > O; 

a proximity parameter t, 0 :5 t < I; 

strictly feasible (x0• yo, s0 ) with (x0 )r s0 = nµ0 and o(x0 , s0 ; µ 0 )::;; r : 

a barrier update parameter 0, 0 < 0 < I . 

Sharper Analysis of Upper Bound for the Iteration Complexity 
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begin 

x := xo; s :=so; Y =yo; µ:= µo ; 

while nµ ~ E do 

µ := (1 - 0)µ; 

x := x + 6x; 

y := y + 6y; 

s := s + 65; 

end while 

end 

Figure 1. Primal-dual IPM with full-Newton steps. 

3. Analysis of the Primal-dual IPM with Full-Newton Steps 

We first deal with the effect of a full-Newton step on the proximity 

measure. The next lemma implies that when o(x, s; µ) is small enough then 

the primal-dual Newton step is quadratically convergent, as stated in 

Corollary 3.1. 

Lemma 3.1 (cf. (9, Theorem 11.50]). If o := O(x, s; µ) :5 I, then the 

primal-dual Newton step is feasible, i.e., x+ and s• are nonnegative. 

Moreover, if o < I, then x + and s + are positive and 

52 
S(x+ • s+; µ) :5 ~2(1 - o2 ) 

Corollary 3.1. If o := O{x, s; µ) s *, then o(x+, s•; µ) s o
2

. 

Initially, the duality gap is nµ0. ln each iteration, it is reduced by the 

factor I - 0. Using this, one easily proves the following lemma. 
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Lemma 3.2 (cf. (9, Lemma 11.17]). After at most 

rt nµo1 
9log7 

iterations, the algorithm stops and we have nµ s; &. 

We have the following lemma that will be used in proving the next two 
theorems. 

Lemma 3.3 (cf. [9, Lemma 11.54]). Let (x, s) be a positive primal-dual 

pair and µ > 0 such that xr s = nµ. Moreover, let o := S{x, s; µ) and let 

µ+ =(I - 9)µ. Then 

+ )2 ( 2 9
2
n O(x, s; µ = I - 9)o + 

4
(
1 

_a)" 

The next theorems present iteration bound of the primal-dual IPM with 
full-Newton steps. 

Theorem 3.1. If t = 1/.Ji and 9 = I/~. then the algorithm 
requires at most 

r Fn+i log n~o1 

terations. The output is a primal-dual pair (x, s) such that x Ts s; &. 

Proof. Let us take t = If.Ji. By using Corollary 3.1, since we have 

5(x, s; µ)<;If.Ji, after the primal-dual Newton step we have o(x+, s+; µ) 

S 1/2. Then, after the update of the barrier parameter to µ + = (I - 9)µ with 

} = 1/Fn+I, by using Lemma 3.3, we get the following upper bound of 

>(x+, s+; µ+ )2: 

+ + 2 I - 9 9
2 
n = _!. . O(x•, s ; µ ) s-4- + 4(1-9) 2 
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The last equality follows by substituting 0 = t/..r;;+T. Hence, we obtain 

o(x+, s+; µ+) s; 1/./2 = t . This means that the property 

o(x, s; µ) s; t 

is maintained after each iteration. Therefore, combining this with Lemma 3.2, 

we obtain the theorem. 0 

Note that Theorem 3.1 holds for every n ~ 1. In practice, n is much 

larger. For such cases it is worth mentioning that slightly bcner iteration 

bounds can be obtained, as the following theorem. 

Theorem 3.2. If t e [0.6687, 0.6773] and 9 = 1/Fn, then for n ~ 47, 

the algorithm requires at most 

r Fntog n~
0

1 
iterations. 

Pr oof. Let us take 0 = 1/Fn. By using Lemma 3.1 and Lemma 3.3, we 

can verify that if 

(I - l/Fn)'t4 1 2 + <t 
2(1 - t 2 ) 4(1 - 1/Fn) - • 

(3.1) 

then o(x, s; µ) s; t is maintained. The region in the ( t , n )-space defined by 

(3 .1) is depicted in Figure 2, where the smallest value of n is around 46.6274 

at t = 0.6731. Therefore, n = 47 is the smallest integer value of n which 

satisfies (3.1 ). We can find out that for n ~ 47, the inequality (3.1) holds for 

t e [0.6687, 0.6773]. Then we have the theorem. 0 
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to 

j . 
(1-1/v'ii}iA 1 I 1 n I 2(1 - T2) + 4(1 - l/ Jn} $ TJ 10• 

.l 
i 

sof. " / 1 
I 

.., ___._ 
-- __j oc: OM OM O• 01 o.n 

t 

Figure 2. The region defined by (3. 1 ). 

The value of n in Theorem 3.2 can be improved to n ~ 6, as stated in the 
following theorem. 

Theorem 3.3. If 't E [0.7433, 0.8289) and e = 1/../n, then for n ~ 6, 

the algorithm requires at most 

rJniog nn 
iterations. 

Proof. We use (9, Theorem 11.52], a sharper quadratic convergence result 

of a primal-dual Newton step. This theorem states that if o := O(x, s; µ) < I, 
then 

52 
o(x•,s•;µ)S J1(t-04)· 

Then, by using Lemma 3.3, we obtain that for e = t/../n the propeny 

O(x, s; µ) ~ 't is maintained if 
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(1 - l / fn)-r4 
I 2 

2(1 - 't4 ) + 4(1 - 1/Tn) $ 't . 
(3.2) 

Figure 3 depicts the region defined by (3.2). The smallest value of n is 

around 5.1971 at 't = 0.7968, and we can verify that for the smallest integer 

value n = 6, the inequality (3 .2) holds for 't e [0.7433, 0.8289]. Thus, we 

get the theorem. 0 

.., 
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20 -
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Figure 3. The region defined by (3.2). 
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