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FURTHER EXPLORATION OF
THE KLEE-MINTY PROBLEM.

B PARUHUNM SILALAHI

Department of Mathematics,
Faculty of Mathematios and Natural Scienees
Bogor Agrncultural University
JI Meranti, Kampus IPB Darnmaga. Bogor, 16680 Indonesia

ApsTrACT. The Klee-Minty problem is explored in this paper
The coordinates formulas of all vertices of the Klee-Minty cube
are presented. The subset representation of the vertices of the
Klee-Minty cube is discussed. How to construct the Klee-Minty
path is showed. It turns out that there are rich structures in the
Klee-Minty path. We explore these structures.

Key words: Klee-Minty cube, Klee-Minty path, Klee-Minty prob-
lem.

1 INTRODUCTION

The Klee-Minty (KN) problem is a problemn that had been presented
by Klee and Minty in [3]. The n-dimensional KM problem is given by:

min y,

subject Lo pys .y <y <1 —py—y. h=1,...,n, (1)
where p s small positive number by which the unit cube [0, 1]" 15
squashed. and yy = 0. The domain (we denote as €"), which is called
KM-cube, is a perturbation of the unit cube in R™. If p = 0 then
the domain is the unit cube and for p € (0, %) it is a perturbation
of the unit cube which is contained in the unit cube itself. Since the
perturbation is small, the domain has the same number of vertices as
the unit cube, i.e. 2",
The KM-problem has become famous because Klee and Minty found
a pivoting rule such that the simplex method requires 2™ — 1 iterations
to solve the problem (1)

Y-t Sk S 1=
In this paper. we explore the KN problem further. We provides for-
mulas for the coordinates of all vertices of the KM cube. and discuss
the subset representation of the vertices of the KM cube. Then we
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deseribe the KM patie We show that when umng the subiset represen

tation, the KN path canceasthy he construcned b ising, the so-called
flipping operation. It turas out that there are rich structures m the
KAL path - We explore these structures

2 VERTICES OF THE WLEE-NDINTY s

With the g-durensional KN problens as detined w01, we debie the
slack vectors s and § according to

S = W iy e s (2}
S22 < P e L A (3)

For any vertex of the KN cube we liave either s, = 0 or § = 0, for each
k. As a consequence, cach vertex can be characterized by the subset
of the index set J= {1.2.... n} consisting of the indices & for which
8 vanishes (and hence s, is positive). Therefore, given a vertex v we
define
S.={k : 8=0}={k: s >0}.

Note that the KN cube has 2" vertices. Since 2" is also the number
of subsets of the index set I, each subset S of the index set uniguely
determines a vertex. We denote this vertex as v, Given S, the co-
ordinates of v” in the y-space can easily be solved from (2) and (3),
because we then have 5 = 0ifk € Sand s, = 0k € S, which yields
n equations in the entries of the vector . When defining y, = 0 and
y = v°, one easily deduces that

1 — pyg . k€9,
e = i (4)
PUk-1- AE D
Since yg = 0, we have y; € {0,1}. This together with (4) nnplies that
Yx 1s a polynomial in p whose degree is at most & — 1. Moreover, the
coefficients of this polynomial take only the values 0, 1 and -1, and
the nonzero coefficients alternate between 1 and —1. Finally if yx # 0
then the lowest degree term has cocflicient ]
We can be more specific. Let

S=1{51,82 -8}, 55=0<9 <5< .. <8< Smiti=n+L

Then the entries of y are given by the following lemma. In this lemma
we define an empty sum to be equal to zero

Lemma 1. Onc has

Us, = Zi—lll";"' o u<i<m,. 12}

1=

and
k-3,

Ye=p" Yo, 8 <k<siy1, k@S (6)
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Proof T0H ¢ S then the didimuon of S amphes that s, - b < ) i
SO ¢, \\111; =" e 1t follows from (4 that i et e

b= il = = PEF Mt =0
proving (6).

So it remains to prove (5). The proof uses induction with respect to
the index ¢ in (5) Before entering this proof it may be worth noting
that (5) eXPresses y,, as i ]ml\'nnmi:tl in p of degree s, — 5, The lowest
degree term occurs for ) = ¢ and henee this term equals ( 1)%" = 1

For ¢ = 0 the sum in (5) bhecomes empty, whenee we obtaim y, = (),
as it should. This proves that (3) holds if ¢ = 0. Now assume that (3)
holds for some 7, with 0 < ¢ < m. Since s,;, € S, according to (4) we
have

ys.,;zlu."ys.”ﬂ- (‘)
At this stage we need to distinguish two cases: s,,;, — 1 € § (case [)
and s;4, — 1 € S (case 11).
In case I we must have 5,4, — 1 = 5,. Since (5) holds for y,, it follows
from (7) that

Uy =1 = pye, = 1= p T, (=1)117p%
Y= 1)
= | & g (=1joitaghnssy,
In case 11 we may use (6), which gives
Piioy=1 = i~y = ghii=a S (=1) I pnees

N S E e

whence (7) vields that

t
Ysipy = 1 —pZ(_ HJpn..:—I—-; e 1+Z( :HIJ SRSy
i=1

We conclude that in both cases we have
141

Ysiyy = l-l"Z:( 1”“3 Sig1—8y _Z a‘.l+;,r -r.“_,_'.

which completes Lhc proof. O

THE KLEE-NINTY PATH

As already mentioned previously, Klee and Minty found a pivoting
rule such that the simplex method requires 2 - 1 iterations to solve the
problem (1). This implies that the method passes through all vertices
of the KM cube before finding the optimal vertex {which is of course
the zero vector). We call this path along all vertices the KM path. It
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i well known o which order the vertices are visited. This can be casily
described by using the subset representation of the vertices int rodiced
m the previous section. The path starts at vertex (0. . .0, 1) whose
subset is the subset S; = {n}. The subsequent subsets are obtained by
an operation which we call flipping an index with respect 1o a subsie
S ML Given a subset S and an index ¢ Hipping ¢ twath respect 10 S)
tcans that we add ¢ to Sif ¢ ¢ S, and remove @ from S if 1 € §. Now
let Sk denote the subset corresponding to the k-th vertex on the KM
path. Then Siyy is obtained from S as follows:
e if [Si| 15 odd, then fhp 1
o il [Si] is even. ther thp the elomem following the smallest ele-
ment in 5.
Denoting the resulting sequence as P, we can now vasily construct the
KM path for small values of n:
P; i {l} =} ﬂ
Py: {2} -5 {1,2} > {1} -0
Py: {3} = {13} = {1.2,3} = {2.3) > P,
Fi: {4} = (1.4} - {1.2.4) - {2,4} > {2,3.4} = {1.2,3,4)
—{1,3,4} — {3,4} = 1.

Table 1 shows the subsets and the corresponding vectors y for the
KM path for n = 4. The corresponding tables for n = 2 and n = 3 are
subtables, as indicated. Note that if subsets S and S' diffor only in n,
and y = vg and 3 = v, then we have

VB = b":, l<i<n, g+ y:l = L

Obviously, the subsets of two subsequent vertices differ only in one
element. For the corresponding subsets, Si and Sk41 say, we denote
this element by #x. Then we have 5., = 0 in one of these vertices, and
in the other vertex 5, > 0, or equivalently s, = 0. On the interior of
the edge connecting these two vertices we will have s, > 0and 3, >0.
Il n = 4 then, when following the KM path, the flipping index i runs
through the following sequence:

1.2, 1,8: 1, 234 1, 21,8, 1,31

So if n = 4 then the flipping index 8 times equals 1, 4 times 2, 2 times
3, and once 4.

Table 2 shows the slack vector s and Table 3 the slack vector 3 for
each of the vertices. For a graphical illustration (with n = 3) we refer
to Figure 1.

4. SEQUENCE OF VERTICES IN THE KLEE-MINTY PATH

One easily observes that for n € {2,3,4}, the second half of P, is
just P, _) whereas the first half of P, arises by reversing the order of the
sequence P,_, and adding the clement n to each sets in the resulting
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N ; | 1 i
i1 \ : ! ‘
{4y § L ;. o4 f Jr=gr ’
24 v li-p| p-p 1=+ |
{2, 4} | 0 [ 1 1‘ P | = p? |
(2,44} & 0 S A B ;
{1234} Lo [ o g U= e Bt
C{raa) | ; ) - L -p+p" |
{34y | 0 0 | 1 1—p
3 | o0 0 1 p
{1.3} 1 p l e p-p
| {1.2.3) I Lep [ L=p=p* | p=pt 4y
{23} f 0 | 1 [ 1-p p=p
f {2} { 0 i i l P p°
{1,2} 1 1 —p p—p° p—p
{1} ! p P P’
0 o | o | 0 0

Tapre 1. The KN path (in the y-space) for n =

sequence. Hence, when denoting the first half of P, as P!, we have
forn € {2,3,4} that P, = P" , = P,_; Indeed. when defining Py = 0
then this pattern holds for each n > 1, as stated in the following lemma.

Lemma 2. Forn > 1. onc has

‘nn : e —* [)n- 1 (8)

n—1

Proof. The proof uses induction with respect to n. We already know
that the lemma holds if n < 4. Therefore, (8) holds if n = 1. Suppose
that n > 2. Let S; denote the k-th subset in the sequence P,_,. By
the induction hypothesis we have S; = {n—1} and Sp» 1+ = 0. The
first set in P, is the set {n} = {n} U Spn-1. For 2 < k < 277!, we
consider the set S = S; U {n} and we show below that its successor
is the set S;, U {n} This will imply that the 2" '-th set in P, is
S U {n} = {n — 1.n}. whose successor is the set {n — 1}. the first set
of P, ;. This makes clear that it suthees for the proof of the lemma if
we show that for each set Si in P,_; the successor of Sp U {n} is the
set Sx_y U {n}. This can be shown as follows.

If |S] is even then the successor of S in P}, arises by flipping the
element following the smallest element in S. If this smallest element
equals n — 1 then we must have S = {n — 1,n}, and then the successor




I | i i
Sy 0 e 0 Sy
[1.4) '| I oo 0 I
{r.2.ay [ 1 =3 \ [ g
Ry | oo o1 ( | | =2 |
{2,3,—1} L U 1 1 -2p i 1 —2p+ 2p° .
L2384y 1 L -2 | L=2p+2% | 1 2p+ 207
{1.3.4} | I Vo L o2 L 2 dp
(3.4} | o 0 1 | | —2 |
EE I O S 0
{m}l 1| 0 | 1202 0
{1,2,3} | 1 1 L—=2p |1 =2p+ 2p? 0
{2,3} ‘ N 1 —2p 0
Ty o T T 0 0
{1,2} L 1] =2p () ()
ay [ 0 0 | 0
0 | o 0 0 0

TABLE 2. The KM path (in the s-space) for n = 4.

of §is the set {n — 1} = S), which 1s the first element of P,_;. Other-
wise the smallest element is at most n - 2, and then, since |Sk| is odd,
the successor of S is equal to Sy, U {n}. The latter follows since S
and Si_; have the same smallest element and |Si_,| is even.

If |S] is odd then the successor of S in P, arises by flipping 1. Since
|Sk| 1s even flipping 1 yields the predecessor of Sy in P,_,, which is
Sk-1- Hence we find again that the successor of S is Sx_; U {n}. This
completes the proof. a
According to this lemma, the index ¢ that occurs K times as Hipping
index in P,_; will occur 2K times in Py, ie. K times in P, and K
times in P,_;. The index n flips ouly at the last set in P?_,, which gives
the first set in P,_;. These sets are {n — 1,n}\ {0} and {n - 1} \ {0}
respectively. The complement operation of {0} is applied to adjust
for the case where n = 1. As an immediate consequence we have the
following corollary.

Corollary 1. The index 1, 1 < i < n, never flips in Py, for0 < k < 1.
1L flips for the first tume i P, when applied to the set {t — 1,1} \ {0},
which yields the set {i — 1} \ {0}.

From Lemma 2, for 0 € ¢ < n, we can obtain

Po: PPy P} .. PSP, (9)
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C{1.2. 4} (TR ‘ 1 —2p+2p7 ( ‘
{2,4} 1 1 0 ‘ 1-2p | 0 1
{234y ff v | 0O () (! ;
{1234} O 0 | 0 0 !
P84} i U 1=2p 0 | 0
{3.4} 1 1 0 | 0
{3} 1 1 0 1-2p
{1,3} 0 1 —-2p 0 ’ 1 -2p+2p
{1,2,3} 0 0 () [ 1=2p+2p° =2
{2,3} ! 0 0 | 1=2p+ 2
{2} 1 0 1 —=2p 1 - 2p°
1,2} 0 0 1= 2p +2p? 1 —2p% +2p°
{1} 0 1-2p 127 | 1-2p°
o | 1 ] 1 1] B
TaBLE 3. The KM path (in the §-space) for n = 1.

According to Corollary 1, index i is flipped for the first time in £
hence we have the next corollary.

Corollary 2. The indez i fups for the last time an I, at the set
{i — 1,i} \ {0}, which yrelds the set {2 - 1} \ {0}.

The sequence P, is equal to the sequence which is obtained by

reversing the sequence
An-1 Ptk
P = ... P =2 B,
and by adding the element n to each sets in the resulting sequence.

Thus the next corollary follows.

Corollary 3. The index i fhps for the fust tunc in Py at the set
{i — 1,n}\ {0}, which yields the sct {i — 1,7,n} \ {0}.

Moreover, by letting J; be any subset of V{1, ... i}. we have the
following corollary.

Corollary 4. The index 1 flips in P, when it 1s applied to either
{i— L\ {0}uJ. or {i-1}\{0}UJ.

Proof. Let us consider P, asin (9). The flipping indexes of two sets that
connecting two sequences of sets consecutively aren. n—1. ... 1+ In

SR T e
Fa

b ylis
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FIGURE 1. Unit cube (red dashed), KM cube (blue
dashed) and KM path (blue solid) for n = 3.

this case there is no index which is cqual to 2. In F;, flipping an index 1
is only applied to the set {i — 1,i}\ {0} which yield the set {i — 1}\ {0}
Let us call the pair of two sets, where an index 2 1s flipped with respect
to one of the sets and another one is its successor, as pair of sets with
flipping index . Generally, the pairs of sets with flipping index 7 that
appear in Pk > i, definitely equal to pairs of sets which is resulted
from the union of each set of pair of sets with flipping index 7 in Py by
{k +1}. By taking J; as any subset of I\ {1, ..., i}, we obtain that
the pairs of sets with flipping index 7 in P, are {i — 1,1} \ {0} U J; and
{i =1} \ {0} U J;. This implies the corollary. O

The following corollary expresses how many times the index @ 1s
flipped in P, . We have disenssed this number for small value of »
previously.

Lemma 3. The indez i, 1 <i < n, is flipped in P, ezactly

277 times.
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Froof e mdex s tipped ondy 1 rane i 0 By using the recursive
pattern of £, as in Lenuna 2 and Corollary 1, in P, the index

(n - 1. 1z fhipped 2 ties,
no— 2. s thpped 4 tmes.

| Nk B [!i;:]nl"ll 2% thmes
L 1, is flipped 2"°! times.
The lemina follows by taking i = n — k. O

When n is given, the set S; is uniquely determined by k. and vice
versa.  Moreover. for each k (2 < & < 2%), the sets S and S,
differ only in one element. This means that the sequence P, defines
a so-called Gray code. Such codes have been studied thoroughly, also
because of their many applications.! It may be worth mentioning some
results from the literature that make the one-to-one correspondence
between k and Sy more explicit. The next proposition is the main
result (Theorem 6(ii)) in [1].

Proposition 1. One has 1 € Sy 1f and only 1f

lz 5 - + —12-J mod 2 = 1. (10)

Given k, by computing the left-hand side expression in (10) for i =
1,2,.... n we get the set S;. Conversely, when S; is given we can
find k (also in n iterations) by using Corollary 24 in [1]. This goes as
follows. We first forin the binary representation b, ... 5yby of S, with
b, = 1if1 € S; and b, = 0 otherwise. We then replace b; by 0 if the
number of 1's in b, ...byby to the left of b, (including b; itself) is even,
and by 1 if this number is odd. The resulting binary n-word a,, . .. asa;
is the binary representation of some natural number, let it be K. Then
k=2"- K. For example, let Sy = {2,3} and n =4. Then

Se=by...boby=0110240,...a00, =0100=4 2 k=2 -4 =12,

which is in accordance with Table 1.

1Gray codes were first designed to speed up telegraphy, but now have numerous
applieations such as in addressing microprocessors, hashing algorithms. distributed
systems. detecting/correcting channel noise and in solving problems such as the
Towers of Hanoi. Chinese Ring and Brain and Spinout

It simplities an earlier result in [2], nameh

Pt _q
L € Sp & ’ o d 2= L
_ * (lazn ) S S 11-—&J)m0
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OO EDGES OF THE NLEE-NINTY PATH

A edge of the KN path e CF s a0 bine segiment conmec g rw
consecutive vertices of the KN path As helore, we yepresent the A-th
vertex on the KN path by the set S, The edge connecting Sy and
Sk i denoted as o The set of Wl edges of the p-dimensional KN
path, denoted by £ s therefore siven b

]
" U ef, 1)
kot
Remember that Sg and Sy, difter only i one element, whoch we denote
as ix. On the interior of the edge connecting these two vertices we have
s, > 0and §, > 0. For any j # i, we have §;, = 0if j € Sx N Sk
and s, = 0 otherwise. So it follows that if j # 1, then either s, = 0 on
ecors,=0oneg .

For u # 1, we have either s, = 0 or §; = 0, which implies either
yr =0o0r y =1 oneg. Since for any j < 1 we have either 5, = 0 or
&, = 0 on ¢}, we may conclnde that y, is constant on ¢} . Summarizing,
we may state that on ef we have the following properties:

(¢) 8, >0ors, >0,

(1) j#u : §,=00rs; =0.

(i22) 1 € j < ix @ y, is constant.

Table 4 and Table 5 shows the slack vector s and s on ¢} for n = 4.
The subtables show sand sforn=1ln=2and n =3

We therefore can describe the edge ¢} as follows
er={yeC" : foranyj#iu, 5 =0il j € SiNSky1, s; = 0 otherwise}.
Or, in other words, since
Si U Skiy = (Sk N Skir) U {ag), e kP
we may write

y E el’l :
C: =4 &= 0 lf} € Sy nSk+1, 5 (12)
5, = 0if ] ¢ Sk USin

Further elaborating (717) we get the following lemma.
Lemma 4. Let iy he the flipping clement for i, then on ¢ for 1 <

J < iy one has
v = l P J = “&' - ll
=30 , otherwise.




- =

| Edge

——

—— 8y Sy S 8
{4} - {1,4} (0.1) 0 0 (1-24,1)
{11} - {1,2,4} I 1(0,1-2p) 0 (1 =202 +20°,1 - 2p" |
{1.2.4} = (2,4} (0.1) | (1-2p.1) 0 (1-2p%1=2p242p") i
{24} - {2,3,4} 0 1 (0,1 - 2p) (1 =204 2021 = 27)
{2,344} - (1,2,3,4} || (0.1) [(1=22,1)] (1 =201 =2p+20%) | (1 =2p <20 =20°,1 = 2p ¢ 2p%)
{1.2.3..1} - {1,3,4} 1 [(0,1=2p) [ (1 =2p+20%1-2p%) | (1 =2p +2p%.1 = 2p+ 2p* — 20"
{1.3,1} - {3,4} (0.1) 0 (1=2p21) (1 20.1 =50+ 2% i
{4,4} - {3} 0 0 1 (0.1 - 2p)
{31 - {1,3} (0.1) 0 ! (1 -2p%.1) 0
{1.3} - {1,2,3} 1 (0.1 =2p) (1=2p+2p1-2p% 0
{L23}-(23) | 0.0 | (1=20.1) (1=2p,1=235+25" 0
| {28} -{2) 0 1 (0,1 - 2p) 0
{2} - (1,2} 0.1) | (1-2p.1) 0 0
{12} =1} 1 (0,1 - 2p) 0 0
{1} -0 (0.1) 0 0 0 .

TABLE 4. Edges of the KM path (in s-space) for n = 1.

it VISE

Vi 1

LR R T |




TABLE 5. Edges of the K\ path (in 3-spacc) for n = 4.

l

L Edge 5 3 3 1 & _"—}
{4} — {1, 4} 0,1y |(1 22,1} (1-20%1) 0 -
f1.4) ={12:4} 0 |(0,1=2p)|(1-2p+20%1-2p%) 0
{1.2,4} - {2,4) (0,1) 0 (1=2p.1=2p+2p%) ()
(2,4} - {2.3,4} 1 0 0.1-2p) 0
{2.3.4}) = {1.2,3,4} | (0,1) 0 0 1
{1,234} - {1.3.4} | o [(0.1-2p) 0 | 0
{1,3.4) — {34} (0,1) ' (1=2p.1) 0 0
{3.4} - {3} 1 1 0 (0.1 2p)
{3} - (1,3} 0,1) 1(1=2p,1) 0 | (1=20.1 2ps0
{1.3) = {1.2,3} 0 (0.1=2p) | 0 (1 =20+2p% 1~ 2p+ 2p% « 2p) ]
{1.2.3} - {2,3} (0,1) 0 0 (1=2p+20 = 2p% - 2p+2p°)
(2.3} - {2} 1 0 (0.1 - 2p) ’ (1 =20+ 201 = 2p°)
{2} - (1,2} (0,1) 0 (1=2p.1-2p+2p%) (1 =205 1 - 2 +2p%)
(1.2} - {1} 0 |(0.1-20)|(1=20>20%1-20% (1 = 20 + 08 1 = 2%
1-0 0,1) | (1-2p1) (1= 2p%1) | (1= 2% 1)
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Proof: The only ditferent element i S, el Sy defintely is the index
¢ that we hipan the set Si According to Corollary 4, the only different
clement o happens i pair of sets {1, - L\ {0}ud,, and {4 — 1}
{0} U Ji,. where J,, is any subset of J\ {1, ... i} . This means that
on the edge connecting Sy and Sk i1 we have
51 =0,8=0,....8,,=05,., =0,
From s, = Oweget y; = 0. Then subsequently we get y, = (. .. .. Yiy-2 =
U.yy-r = 1lomsy =0,....8 ,=035,., =0, which proves the
lemma a
One may use Tuble 1 1o verify Lemma 1 for n <4
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