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Local Density of Optical States of an Asymmetric Waveguide Grating 
at Photonic Band Gap Resonant Wavelength 

Husin Alatas·, Tony I. ·Sumaryada, Faozan Ahmad 
Photonics Research Group, Department of Physics, Bogor Agricultural University, 

JI. Meranti, Kampus IPB Darrnaga, Bogor 16680, Indonesia 

ABSTRACT 

We have investigated the characteristics of local density of optical states (LOOS) at photonic band gap resonant 
wavelength of an asymmetric waveguide grating based on Green's function formulation . It is found that the LOOS of the 
considered structure exhibits different characteristics in its localization between the upper and lower resonant 
wavelengths of the corresponding photonic band gap edges. 

Keywords: Local density of optical states, waveguide grating, Green's function method, resonant state. 

1. INTRODUCTION 

In recent years, the asymmetric waveguide grating (WG) structure in the fonn of asymmetric corrugated slab waveguide 
has been intensively used in integrated optical device for sensor application [I]. The existence of photonic band gap 
(PBG) in an asymmetric WG, where light in certain range of wavelength cannot propagates, has been well studied [2] . 
The wavelength variation of resonant wavelengths at PBG edges are usually considered in sensor device due to its ability 
to detect the change of refractive index of the surrounding material. 

Recently also, it was reported the characteristics of energy confinement, scattering loss and group velocity of asymmetric 
WG at resonant states of the corresponding PBG (3] . It was shown that for increasing number of teeth, the group velocity 
and energy confinement can be enhanced significantly without affecting the scattering loss on both upper and lower 
resonant states. In the meantime, groove depth variation exhibited different characteristics between both resonant states. 
It is well known that the number of teeth as well as groove depth that lead to the variation of the corresponding 
parameters affect significantly its sensitivity. 

On the other hand, it is well known that one of the important properties of optical structure is its ability to accommodate 
photon eigenmodes at specific location inside the asymmetric WG. This property is represented by the so called local 
density of optical states or LOOS. There are several ways to calculate LOOS e.g . (4, 5, 6]. One of them is through 
Green ' s function method in the fonn of Dyson formulation [6]. In this method the corresponding LOOS can be 
calculated directly without calculating the electromagnetic field first as needed in the method given in ref. (4,5]. Unlike 
finite-difference scheme, this method does not need boundary condition. 

Following the results of ref. (3) , in this report we discuss the characteristics of LOOS of the associated asymmetric WG 
structure. Similar to that report, we employ the same Green's function method to calculate the related LOOS. We will 
discuss the dynamical characteristics of LOOS of the considered asymmetric WG with respect to the variation of number 
of teeth and groove depth showing the different behavior between the upper and lower resonant states. 

2. ASYMMETRIC WAVEGUIDE GRATING STRUCTURE 

, We consider an asymmetric WG structure similar to what was discussed previously in ref. (3) . The corresponding 
structure is a three layer system consisting of a cladding with 11,,

0
.i = I. corrugated slab dielectric " aveguide of 

thickness h = 160 nm with n •loh = 1.98. and substrate of n.111h = 1.44. while the grating period is set to t\ = 200 11111. We 

consider the TE mode electric field illuminated from the left side. In th is mode. the associated Green·s function is a 
scalar function [6] . 

*a latas 11 iph.ac.id 
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Given in Fig. 1 is the sketch of corresponding asymmetric WG in which the corrugated section is only at one side of the 
slab waveguide. Here, we denote the number of teeth by N and g for the groove depth as parameters to be varied. 

Cladcfui& A 

Subtrate 

Fig. I Sketch of asymmetric waveguide grating 

3. GREEN'S FUNCTION FORMULATION 

We begin the calculation of Green's function G(r, r') of the corresponding asymmetric WG by finding out the 

background Green's function GB (r, r'), namely the Green's function of three layer system without corrugated section. 

The detailed calculation for this function can be found in ref. (6]. After constructing GB (r,r'), the function G(r, r') can 

then be calculated from the following equation: 

G(r,r') =GB (r, r')+ J GB (r, r")kJ £\e(r")G(r", r')dA" ·' (1) 

A 

Here r = (x, y) and r' = (x', y'} denoting the observation point and dipole position respectively, while .'.\& representing 

the perturbation in the form of permittivity contrast between background and corrugated section. The symbol k0 is the 

vacuum wavenumber, while A is the computational domain. Having the Green's function (I) at hand, one can calculate 
it based on the following discrete form: 

(2) 

where M and l are parameters to handle singularity [6]. In principle, Eq. (2) can be solved iteratively namely by 
adding the perturbation one by one into the background structure. From this Green's function one can calculate the 
corresponding electric field as follows: 

E(r)= E8 (r)+ J G(r,r')kJ£\&(r')E 8 (r')dr' 
A 

where £ 8 (r) is the fundamental mode ofthe slab waveguide. 

(3) 

To calculate all these we define the computational domain as follows: the left and right boundaries in x - direction is 
(x, ,x, )= (o,8)pm, while the bottom and top boundaries in y- direction (y" ,y,} = (-40, 200)nm. In the mean time the 

meshes are set to L\T = 20 nm and 6y =I 0 nm. All these computational parameters are similar to that used in ref. [3]. 

4. LOOS CHARACTERISTICS 

After findings the function G(r.r'). we can now calculate the LDOS using the following dimensionless definition [3 , 7]: 

p(r) = lm[G(r.r )] 

lmr 11 (r.r)] 
(3) 

Fig. 2 

Depiclf 
N = 14 

This quantity describes the number of photon eigenmode available between J. to i. +di. in specific position r. where main fc 

}. denotes wavelength . 
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Fig. 2 (a) Transmittance of PBG of a specific asymmetric WG with N = 14 and g = 40 11111. The left solid-dot denotes the upper 

resonant with shorter wavelength. while the right solid-dot represents the lower resonant with longer \\avelength. (b) I.DOS 

contour (top panel) at upper resonant with A,, = 624 nm and (c) at lo,, er res1,nant "ith J.1 = 697 11111. "ith the 

corresponding electric field (bottom panel). Corrugated area is in siJ.: th.: ho\ "ith solid-Jin.: hounda~. "hile hox "ith 
dotted-line houndary is the uncorrugatcd area. 

Depicted in Fig. 2 is an example of PBG of a specific asymmetric WG structure discussed previously in ref. (3] with 
:\· = 14 and g = 20 11111. along with upper and lower resonant wavelengths. and the corresponding LOOS which is the 

!re main focus of this discussion. 
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It is clearly shown in the figure that both resonant exhibit different characteristics. For the upper resonant, the LOOS is 
mostly localize in the uncorrugated area, while for the lower resonant the localization occurs both in uncorrugated as 
well as conugated areas. This phenomenon is consistent with the fact that the related electric fields are also localized in 
more or less the same areas for both cases as shown in the figure. 
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0.2 

(b) 
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0 2 '4 6 8 0 2 '4 6 8 

.x{ln) 
Fig. 3 LOOS contour of for upper (left panel) and lower (right panel) resonant for (a) g = 100 nm and N = 14, (b) for 

g =I 00 nm and N = 20. Corrugated area is inside the box with solid-line boundary, while box with dotted-line 

boundary is the uncorrugatcd area. 

The effect of groove depth on LOOS is shown in Fig. 3a for g =I 00 nm with N = 14. It is demonstrated that deeper 

groove leads to higher LOOS with the different characteristics between upper and lower resonant are similar to the case 
given in Fig. 2. In the mean time, the LOOS can be further enchanced by increasing the number of teeth as exemplified 
in Fig. 3b for N = 20 and g:::: 100 nm. 

To characterize further the corresponding LOOS, we plot the highest value of LOOS at a specific point (r0 ) along the 

line in the middle of the uncorrugated area for both resonant cases. According to Fig. 2 and Fig. 3, it should be noted that 

these values are not the highest LOOS of the corresponding asymmetric WG. However, it can be used to describe the 

dynamical characteristics of LOOS with respect to the variation of g and N. 

Given in Fig. 4a is the variation of LOOS as a function of g at the specific aforementioned point. It is shown that for 

lower resonant case the related LOOS is increasing monotonously. But this is not the case for the upper case which have 

the maximum value at g = I 00 nm. This remarkable characteristic can be explained as a consequence of LOOS 

localization for the upper resonant case is mostly in the uncorrugated area. which is getting smaller for increasing groove 

depth. On the other hand. the variation of number of teeth N shares the same monotonous enhancement of LOOS 

between both resonant cases as expected. 

5.SUMMARY 

We have discussed the LOOS of an asymmetric waveguide at resonant states of photonic band gap edges. We observed 

different characteristics between LOOS at upper and lower resonant wavelengths . For upper resonant the corresponding 
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is LOOS is localized in the uncorrugated area, while for the lower resonant is in both corrugated and uncorrugated areas. It 
IS is demonstrated that the larger number of teeth as well as deeper groove lead to the enhancement of LOOS. 
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Fig. 4 Highest LOOS value at specific point along a line in the middle of asymmetric WG for (a) various g with N = 14, (b) 

various N with g = I 00 nm. 
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