Volume 8/ Nomor 3/ Desember 2006

ISSN 1410 - 9409

ANALISIS KEBIJAKAN PENGEMBANGAN INDUSTRI KECIL KERAJINAN TOPENG KAYU DI KABUPATEN GUNUNG KIDUL

ANALISIS KINERJA KELEMBAGAAN PEMBANGUNAN PULAU NATUNA

ANALISIS MARKA MORFOLOGI DAN MOLEKULER SIFAT KETAHANAN KEDELAI TERHADAP INTENSITAS CAHAYA RENDAH

BANJIR BANDANG LOMBOK TIMUR AWAL TAHUN 2006 : INGREDIEN ATMOSFER, ANALISIS FISIOGRAFIS SERTA PENCEGAHAN DAN PENAGNGULANGANNYA

ESTIMASI KEBUTUHAN BIAYA INVESTASI UNTUK PEMBANGUNAN KAWASAN PERBATASAN ANTAR NEGARA

FORMULASI DAN PROSES PEMBUATAN PESTISIDA NABATI

KARAKTERISTIK EKOSISTEM DANAU RAWA PENING PERUBAHAN DAN DAMPAKNYA

KEBIJAKAN DAN STRATEGI PENATAAN RUANG KAWASAN PERBATASAN ANTARNEGARA DI PROVINSI NUSA TENGGARA TIMUR

KETAHANAN ALAMI BEBERAPA GENOTIPE CABAI (Capsicum annuum L.) TERHADAP PENYAKIT ANTRAKNOSA

EVALUASI KINERJA SIMPANG TAK BERSINYAL ANTARA JALAN SULTAN H<mark>AMENGKUBUWONO 9 DAN JALAN</mark> CAKUNG CILINCING RAYA

PEMANFAATAN HIDROLISAT PATI SAGU SEBAGAI SUMBER KARBON UNTUK MEMPRODUKSI BIOPLASTIK POLI-HIDROKSI ALKANOAT (PHA) OLEH Raistonia eutropha PADA SISTIM KULTIVASI FED BATCH

PEMBIBITAN SECARA STEK-MINI TANAMAN MELATI [Jasminum sambac (L.) Aiton]

PENGUJIAN DAN DISEMINASI TEKNOLOGI PEMBUATAN ABON IKAN DI KABUPATEN BULUKUMBA – SULAWESI SELATAN

PERAN DAN PROSPEK TEKNOLOGI KOGENERASI

POTENSI BIOMASA INDONESIA SEBAGAI BAHAN BAKAR PENGGANTI ENERGI FOSIL

PROSPEK BRIKET BATUBARA LIGNIT SEBAGAI BAHAN BAKAR ALTERNATIF SEKTOR RUMAH TANGGA DAN IN-DUSTRI KECIL

RENCANA TATA RUANG PULAU WEH SEBAGAI BAGIAN DARI SISTEM PERTAHANAN DAN KEAMANAN PULAU PERBATASAN

SINTESIS DAN OPTIMALISASI GEL KITOSAN-ALGINAT

STUDI GEOLOGI BAWAH PERMUKAAN RENCANA PEMBUATAN JEMBATAN LINTAS SELAT PULAU LAUT KABU-PATEN KOTABARU KALIMANTAN SELATAN

TEKNOLOGI REMOTE SENSING DAN GIS UNTUK ZONASI KOMODITAS DAN KETERSEDIAAN SUMBERDAYA LAHAN

Badan Pengkajian dan Penerapan Teknologi

JURNAL SAINS DAN TEKNOLOGI INDONESIA

Vol. 8 No. 3 (Desember) 2006

ISSN 1410-9409

Daftar Isi

		J
i	Pengantar	
1-9	Heru Mulyono	ANALISIS KEBIJAKAN PENGEMBANGAN INDUSTRI KECIL KERAJINAN TOPENG KAYU DI KABUPATEN GUNUNG KIDUL
10-19	Urbanus M. Ambardi	ANALISIS KINERJA KELEMBAGAAN PEMBANGUNAN PULAU NATUNA
20-28	Titin Handayani, Sarsidi Sastrosumarjo, Didy Sopandie. Suharsono, Asep Setiawan	ANALISIS MARKA MORFOLOGI DAN MOLEKULER SIFAT KETAHANAN KEDELAI TERHADAP INTENSITAS CAHAYA RENDAH
29-35	Untung Haryanto	BANJIR BANDANG LOMBOK TIMUR AWAL TAHUN 2006 : INGREDIEN ATMOSFER, ANALISIS FISIOGRAFIS SERTA PENCEGAHAN DAN PENAGGULANGANNYA
36-45	Alkadri	ESTIMASI KEBUTUHAN BIAYA INVESTASI UNTUK PEMBANGUNAN KAWASAN PERBATASAN ANTAR NEGARA
46-49	Sofyan Rasyad	FORMULASI DAN PROSES PEMBUATAN PESTISIDA NABATI
50-55	E. Hanggari Sittadewi	KARAKTERISTIK EKOSISTEM DANAU RAWA PENING PERUBAHAN DAN DAMPAKNYA
56-72	Ati Widiati	KEBIJAKAN DAN STRATEGI PENATAAN RUANG KAWASAN PERBATASAN ANTARNEGARA DI PROVINSI NUSA TENGGARA TIMUR
73-79	Bambang Suryotomo	KETAHANAN ALAMI BEBERAPA GENOTIPE CABAI (Capsicum annuum L.) TERHADAP PENYAKIT ANTRAKNOSA
80-85	Dwinanta Utama	EVALUASI KINERJA SIMPANG TAK BERSINYAL ANTARA JALAN SULTAN HAMENGKUBUWONO 9 DAN JALAN CAKUNG CILINCING RAYA
86-90	K. Syamsu. A.M. Fauzi, L. Hartoto. A. Suryani, N. Atifah	PEMANFAATAN HIDROLISAT PATI SAGU SEBAGAI SUMBER KARBON UNTUK MEMPRODUKSI BIOPLASTIK POLIHIDROKSI ALKANOAT (PHA) OLEH Ralstonia eutropha PADA SISTIM KULTIVASI FED BATCH

91-95	Titín Handayani	PEMBIBITAN SECARA STEK-MINI TANAMAN MELATI [Jasminum sambac (L.) Aiton]
96-98	M. Jusuf Djafar	PENGUJIAN DAN DISEMINASI TEKNOLOGI PEMBUATAN ABON IKAN DI KABUPATEN BULUKUMBA – SULAWESI SELATAN
99-103	Achmad Hasan	PERAN DAN PROSPEK TEKNOLOGI KOGENERASI
104-113	Irhan Febijanto	POTENSI BIOMASA INDONESIA SEBAGAI BAHAN BAKAR PENGGANTI ENERGI FOSIL
114-120	Bambang Suwondo Rahardjo	PROSPEK BRIKET BATUBARA LIGNIT SEBAGAI BAHAN BAKAR ALTERNATIF SEKTOR RUMAH TANGGA DAN INDUSTRI KECIL
121-132	CB. Herman Edyanto	RENCANA TATA RUANG PULAU WEH SEBAGAI BAGIAN DARI SISTEM PERTAHANAN DAN KEAMANAN PULAU PERBATASAN
133-137	Purwantiningsih Sugita, Achmad Sjachriza, Dwi Wahyono	SINTESIS DAN OPTIMALISASI GEL KITOSAN-ALGINAT
138-144	Syaefudin	STUDI GEOLOGI BAWAH PERMUKAAN RENCANA PEMBUATAN JEMBATAN LINTAS SELAT PULAU LAUT KABUPATEN KOTABARU KALIMANTAN SELATAN
145-155	Mubekti, A. Rahmadi, S. Ritung	TEKNOLOGI REMOTE SENSING DAN GIS UNTUK ZONASI KOMODITAS DAN KETERSEDIAAN SUMBERDAYA LAHAN
	Petunjuk Penulisan	

SINTESIS DAN OPTIMALISASI GEL KITOSAN-ALGINAT

Purwantiningsih Sugita, Achmad Sjachriza, Dwi Wahyono
Departemen Kimia, FMIPA IPB, Kampus IPB Baranang Siang, Bogor 16144
Email: atiek@indo.net.id

Abstract

Shrimp shell can be used to make chitosan. The objective of this work is to sythesis and optimize chitosan-alginate gel by comparing its rheological properties. Rheological properties of chitosan were improved by gelation using glutaraldehyde as cross linker and natural hydrocolloids such as alginate. Rheological properties measured were strength, break point, rigidity, swelling and shrinking gel. The gel was made by mixing chitosan solution 2.5% (w/v), glutaraldehyde 4%, 5%, and 6% (v/v), and alginate 0%, 0.75%, and 1.0% (w/v). According Modde 5, the optimum gel happened at glutaraldehyde and alginate concentration are 4.0% (v/v) and 0.82% (w/v), respectively. This optimalization to adsorp metal ions gave gel strength, break point, rigidity, swelling, and shrinking properties are 881,4385 g cm⁻², 1,0267 cm, 8,5179 g cm⁻¹, 4,5313 g, and 1,6280 g, respectively.

Kata Kunci: chitosan-glutaraldehyde-alginate

1. PENDAHULUAN

Udang merupakan salah satu hasil perikanan Indonesia yang banyak dikonsumsi oleh masyarakat. Selain dikonsumsi, udang juga banyak dimanfaatkan dalam dunia industri sebagai salah satu komoditas ekspor non-migas. Udang diekspor dalam bentuk udang beku, yang sudah mengalami proses pembuangan bagian kepala dan kulit. Ekspor udang Indonesia ke Amerika pada triwulan pertama tahun 2005 mencapai 14 ribu ton, sedangkan pada periode yang sama tahun 2004 hanya mencapai 6 ribu ton (Kustiani R. 2005). Dengan makin meningkatnya ekspor udang Indonesia dari tahun ke tahun berakibat pula pada peningkatan jumlah limbahnya.

Selama ini di Indonesia, limbah udang baru dimanfaatkan sebagai campuran ran-sum pakan ternak dalam bentuk tepung isolat, hidrolisat protein, bahan campuran pembuatan terasi, petis, dan kerupuk udang. Sementara di negara maju seperti Amerika dan Jepang, limbah udang telah banyak dimanfaatkan sebagai sumber bahan baku pembuatan kitin, kitosan, dan turunan dari keduanya yang berdaya guna dan bernilai tinggi di berbagai bidang industri modern, seperti farmasi, biokimia, kosmetika, industri kertas, industri pangan, industri tekstil, dan lain-lain.

Salah satu kegunaan kitosan adalah afinitasnya dalam menjerap ion logam berat. Besarnya afinitas kitosan dalam mengikat logam sangat tergantung dari karakteristik makrostruktur kitosan yang dipengaruhi oleh sumber dan kondisi pada proses isolasi (Schmuhl dkk. 2001). Bentuk serpihan kitosan, afinitasnya terhadap ion logam telah diuji coba terhadap ion Pb²⁺, Ni²⁺, dan Cr⁶⁺ oleh Jamaludin (1994) dan ion logam Cu(II) dan Cr(VI) oleh Nurdiani (2005). Modifikasi kitosan dapat dilakukan meningkatkan penjerapannya terhadap ion logam. Guibal (1997) menyatakan bahwa modifikasi kimia kitosan menjadi bentuk gel dapat meningkatkan kemampuan dan adsorpsinya terhadap ion logam berat. Hal ini disebabkan karena bentuk gel mempunyai volume pori yang lebih besar dibandingkan dengan i bentuk serpihan.

Dava adsorpsi dari gel kitosan sangat dipengaruhi oleh kestabilan sifat gel yang terbentuk. Telah dilaporkan bahwa penambahan polivinilalkohol (PVA) pada pembentukan gel kitosan dapat memperbaiki sifat gel yang terbentuk, yaitu menurunkan waktu gelasi dan meningkatkan kekuatan mekanis gel (Wang dkk. 2004). Modifikasi lain terhadap kitosan adalah dengan penambahan hidrokoloid alami seperti alginat, gom guar, dan kaboksimetilselulosa dapat memperbaiki Modifikasi ini penerapannya dalam sistem penghantaran obat. Cardenas dkk. (2003) telah mensintesis kitosan alginat, sedangkan Sugita dkk. (2006a dan b) telah mengoptimalisasi sintesis kitosan-gom quar dan kitosan-karboksimetil selulosa, berdasarkan analisis MODDE 5 dari sifat rheologi gel yang

terukur dapat diterapkan untuk memperbaiki sistem penghantaran obat.

Penelitian ini bertujuan mengoptimalisasi sintesis gel kitosan-alginat yang diharapkan dapat memperbaiki sifat rheologi gel dalam penjerapan ion logam berat. Sintesis dilakukan dengan memvariasikan konsentrasi glutaraldehida dan alginat pada konsentrasi kitosan yang tetap.

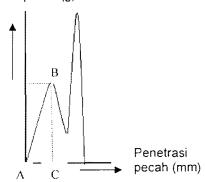
2. METODOLOGI PENELITIAN

Penelitian dilakukan di Laboratorium Kimia Organik Departemen Kimia FMIPA IPB. Bahanbahan yang digunakan adalah kitosan (hasil isolasi limbah kulit udang pancet berasal dari Muara Angke Jakarta) yang memiliki kadar air, kadar abu, derajat deasetilasi dan berat molekul berturut-turut 5,89% (b/b), 0,15% (b/b), 73,61 dan 429734,281 g/mol, akuades, bufer asetat pH 4, bufer fosfat pH 7, CH₃COOH, glutaraldehida, dan alginat. Sifat rheologi gel diukur dengan penganalisis tekstur Stevens LFRA yang dilakukan di Laboratorium Kimia dan Biokimia Pangan Pusat Antar Universitas (PAU) IPB.

2.1 Pembuatan Gel Kitosan-Alginat

Gel kitosan-alginat dibuat dengan variasi glutaraldehida. alginat konsentrasi dan Konsentrasi alginat yang digunakan adalah 0,00; 0,75; dan 1,00% (b/v) sedangkan konsentrasi glutaraldehida 4,00; 5,00; dan 6,00% (v/v). Konsentrasi kitosan dibuat tetap yaitu 2,50% (b/v). Sebanyak 2,50 g kitosan dilarutkan dalam 100 ml asam asetat 1.00% (v/v) kemudian 30 ml larutan kitosan tersebut ditambahkan 5,00 ml larutan alginat dengan variasi konsentrasi 0,00% 0,75%, dan 1,00% (b/v). Campuran diaduk sampai homogen. Setelah homogen ditambahkan 1 ml glutaraldehida dengan variasi konsentrasi 4,00; 5,00; dan 6,00% (v/v). Larutan yang terbentuk kemudian didiamkan selama semalam.

Gel kitosan-alginat yang terbentuk kemudian dianalisis sifat rheologinya yang meliputi kekuatan gel (Kg), pembengkakan (Sw), pengerutan (Sn), titik pecah (Tp), dan ketegaran (Rg) dengan menggunakan texture analyzer.


2.2 Pengukuran Sifat Rheologi Gel

Kekuatan pecah gel (*gel strength*) ditentukan dengan menggunakan alat *Texture Analyzer*. Penganalisis tekstur yang dipakai memiliki luas bidang *probe* 0.1923 cm², beban *probe* 96–97 g, dan jarak *probe* ke gel 2.525–2.575 cm.

Sampel dalam cetakan diletakkan dalam platform tempat sampel, selanjutnya alat dioperasikan untuk melihat qaya maksimum yang

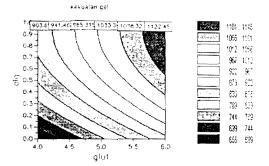
diperlukan untuk memecahkan gel. Nilai kekuatan pecah dihitung dengan persamaan (Angalett 1986):

Beban pecah (g)

Kekuatan gel (g/cm²) =

beban pecah (BC)
luas bidang penekan x nilai kalibrasi

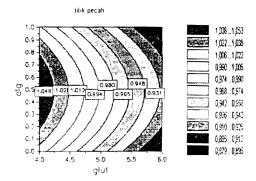
Nilai kalibrasi = $\frac{\text{beban penekan}}{\text{jarak penekan ke gel}}$ Titik pecah (cm) = penetrasi pecah (AC) Ketegaran (g/cm) = $\frac{\text{beban pecah (BC)}}{\text{penetrasi pecah (AC)}}$


Daya serap gel terhadap air dilakukan dengan merendam ± 1,0000 g gel dalam 30 ml larutan buffer asetat pH 4 selama 24 jam pada suhu kamar. Selama proses pembengkakan, wadah ditutup untuk mencegah terjadinya penguapan larutan buffer. Setelah 24 jam, gel ditimbang kembali untuk mengetahui bobot air yang terserap (Wang dkk. 2004).

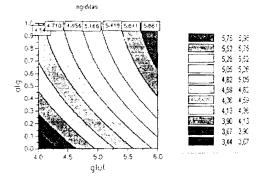
Pengerutan dilakukan dengan merendam ± 2,0000 g gel dalam 30 ml larutan buffer fosfat pH 7 selama 24 jam pada suhu 10°C. Setelah itu gel ditimbang kembali untuk mengetahui bobot air yang dikeluarkan oleh gel (Wang dkk. 2004).

Rancangan Percobaan. Hasil penelitian diolah dengan menggunakan perangkat lunak MODDE 5 untuk melihat pengaruh dari perubahan glutaraldehida konsentrasi gom quar dan terhadap nilai kekuatan, titik pecah, ketegaran, pembengkakan, dan pengerutan gel, dan gom quar mengetahui konsentrasi glutaraldehida yang optimum untuk memperbaiki sistem penghantaran obat.

3. HASIL DAN PEMBAHASAN

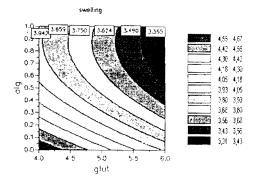

Sifat rheologi gel kitosan-alginat yang meliputi kekuatan gel, titik pecah, ketegaran, pembengkakan, dan pengerutan diamati untuk melihat pengaruh konsentrasi alginat (alg) dan glutaraldehida (glut) terhadap sifat rheologi tersebut. Gambar 1 menunjukkan pengaruh alginat dan glutaraldehida terhadap nilai kekuatan pecah gel. Makin tinggi konsentrasi glutaraldehida yang ditambahkan, maka kekuatan gel akan makin besar. Hal ini jelas terlihat mengingat fungsi glutaraldehida dalam pembuatan gel adalah sebagai pembentuk ikatan silang. Makin besar jumlah glutaraldehida maka makin banyak ikatan dapat dibentuk dan siland yang menyebabkan gel makin keras. Makin tinggi konsentrasi alginat maka gel akan makin kuat. Penambahan alginat dapat memperbaiki struktur ikatan silang kitosan dalam gel sehingga ikatan silang menjadi lebih kaku dan gel menjadi lebih kuat. Makin tinggi nilai kekuatan pecah gel, makin kaku dan makin kuat ikatan yang terjadi antara polimer-polimer yang membentuk jaringan gel tersebut (Rahayu 2000).

Keterangan: [alg] % (b/v), [glut] % (v/v)


Gambar 1 Pengaruh alginat dan glutaraldehida terhadap nilai kekuatan pecah gel (g cm⁻²).

Gambar 2 menunjukkan pengaruh alginat dan glutaraldehida terhadap nilai titik pecah. Dari Gambar 2 terlihat bahwa nilai titik pecah mengalami penurunan dengan bertambahnya konsentrasi glutaraldehida. Hal ini disebabkan karena glutaraldehida sebagai pembentuk ikatan silang dengan jumlah yang banyak akan menyebabkan kerapuhan gel sehingga gerakan segmen di dalam gel menjadi berkurang akibatnya titik pecah makin kecil. Adanya penambahan alginat ke dalam struktur gel pada konsentrasi 0,75% sampai 1,00% menurunkan titik pecah gel kitosan-alginat. Hal ini disebabkan karena alginat akan memperbaiki struktur ikatan silang di dalam gel tetapi alginat sendiri memiliki sifat meyerap air sehingga pada saat konsentrasi alginat yang tinggi titik pecah gel akan makin kecil.

Gambar 2. Pengaruh alginat dan glutaraldehida terhadap titik pecah gel (cm).


Gambar 3 menunjukkan pengaruh alginat dan glutaraldehida terhadap nilai ketegaran. Dari Gambar 3 dapat dilihat bahwa makin tinggi konsentrasi alginat dan glutaraldehida maka nilai ketegaran gel kitosan-alginat makin besar. Seperti yang telah dijelaskan, penambahan glutaraldehida akan meningkatkan jumlah ikatan silang dalam gel sehingga gel menjadi lebih kaku akibatnya nilai ketegarannya meningkat. Demikian juga halnya dengan penambahan alginat yang dapat memperbaiki struktur ikatan silang akibatnya ikatan silang gel menjadi lebih kaku dan nilai ketegaran gel meningkat.

Gambar 3 Pengaruh alginat dan glutaraldehida terhadap nilai ketegaran gel (g cm⁻¹).


Gambar 4 menunjukkan pengaruh alginat dan glutaraldehida terhadap nilai pembengkakan gel. Dari Gambar 4 dapat dilihat bahwa makin besar jumlah glutaraldehida yang ditambahkan, pembengkakan gel sulit terjadi. Hal ini disebabkan karena dengan makin bertambahnya jumlah glutaraldehida menyebabkan ikatan silang dalam matriks gel makin rapat. Berger dkk. (2004) menyebutkan bahwa penambahan senyawa pembentuk ikatan silang, dalam hal ini glutaraldehida akan menurunkan nisbah pembengkakan pada gel kitosan. Penambahan

alginat akan menurunkan nilai pembengkakan gel karena alginat akan masuk ke dalam pori-pori gel, makin banyak alginat yang masuk maka air akan sulit untuk masuk sehingga mengurangi proses pembengkakan.

Gambar 4 Pengaruh alginat dan glutaraldehida terhadap nilai pembengkakan gel (g).

Gambar 5 menunjukkan pengaruh alginat dan glutaraldehida terhadap nilai pengerutan gel. Dari Gambar 5 dapat dilihat bahwa makin tinggi konsentrasi alginat dan glutaraldehida yang digunakan maka nilai pengerutan gel akan makin besar. Hal ini disebabkan karena reaksi antara glutaraldehida dengan kitosan merupakan reaksi kondensasi yang mengeluarkan air sehingga dapat meningkatkan proses pengerutan. Selain itu, penggunaan bufer fosfat dalam proses pengerutan juga memberikan pengaruh yang besar, yaitu dapat menarik keluarnya air dari dalam gel karena ukuran molekulnya yang besar. Peningkatan nilai pengerutan juga disebabkan oleh terbentuknya ikatan hidrogen antara gugus amino kitosan yang tidak berikatan silang dengan glutaraldehida sehingga struktur qel menjadi lebih rapat dan akan memeras air keluar.

Gambar 5 Pengaruh alginat dan glutaraldehida terhadap nilai pengerutan gel (g).

Hasil analisis keragaman ANOVA menghasilkan persamaan glutaraldehida, alginat, dan interaksinya terhadap respon yang diukur yaitu kekuatan gel, titk pecah, ketegaran, pembengkakan, dan pengerutan. Menurut Lindblad (2003) gel yang baik adalah gel yang elastis, lembut, dan mudah membengkak dalam air. Nilai optimum dari gel kitosan-alginat pada konsentrasi kitosan tetap 2.5% yang diperoleh dengan menggunakan software Modde 5.0 adalah pada konsentrasi glutaraldehida dan alginat berturut-turut adalah 4,00 % dan 0,82 % yang memenuhi syarat gel untuk aplikasi sebagai penjerap ion logam. Persamaan alginat dan glutaraldehida terhadap nilai kekuatan pecah, titik pecah, ketegaran, pembengkakan dan pengerutan disajikan pada Tabel 1.

Tabel 1. Persamaan alginat, glutaraldehida, dan interaksinya terhadap respon

Respon	Persamaan
Kekuatan	983,052 + 84,0158 alg + 105,321
gel	glut – 48,8751 alg*alg
Titik pecah	0,986753 - 0,014561 alg -
	0,054043 glut - 0,0314747
	alg*alg
Ketegaran	4,98687 + 0,414784 alg +
	0,60503 glut - 0,146354 alg*alg
Pembeng-	3,7099 - 0,238856 alg - 0,265837
kakan	glut + 0,176441 alg*alg
Pengerutan	1,53869 + 0,0463741 alg +
•	0,0294892 glut - 0,0589481
	alg*alg

Keterangan: glut (glutaraldehida), alg (alginat), alg*alg (interaksi glutaraldehida dengan alginat)

Validasi. Validasi dilakukan pada kondisi gel optimum. Pada Tabel 2 ditampilkan validasi dari hasil respons menurut Modde 5 dan hasil penelitian. Dari hasil validasi dapat dilihat bahwa nilai seluruh respon mendekati nilai Modde 5.0 kecuali untuk nilai ketegaran (Rg) gel. Hal ini berarti nilai optimum konsentrasi alginat dan glutaraldehida sesuai dengan Modde 5.0. Ktidaksesuaian ini diduga karena konsentrasi dan pengulangan yang dilakukan kurang banyak.

Tabel 2. Hasil validasi gel optimum

Respon	Modde 5.0	validasi
Kg	891,3160	881,4385
Тр	1,0247	1,0267
Rg	4,5973	8,5179
Sw	4,0691	4,5313
Sn	1,4561	1.6280

4. KESIMPULAN

Berdasarkan hasil penelitian, optimalisasi gel kitosan-alginat pada konsentrasi kitosan tetap 2.5% terjadi pada konsentrasi glutaral-dehida dan alginat berturut-turut 4.00% dan 0.82%. Sifat rheologi yang terukur pada kondisi optimum berdasarkan analisis dengan modde 5 memberikan nilai kekuatan, titik pecah, ketegaran, pembengkakan dan pengerutan berturut-turut adalah 881,4385 g cm⁻², 1,0267 cm, 8,5179 g cm⁻¹, 4,5313 g dan 1,6280 g. Kondisi ini dioptimalisasi untuk penerapannya pada penjerapan ion logam berat.

5. DAFTAR PUSTAKA

- Angalett SA. 1986. Evaluation of the Voland-Stevens LFRA texture analyzer for measuring the strength of pectin sugar jellies. *J. Texture Studies* 17:87-96.
- Berger J dkk. 2004. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J of Pharmaceutics and Biopharmaceutics 57: 19-34.
- Cardenas A, Monal WA, Goycoolea FM, Ciapara IH, Peniche C. 2003. Diffusion through membranes of the polyelec-trolyte complex of chitosan and alginate. *Macromol Biosci* 3:535-539.
- Guibal E, Milot C, Roussy J. 1997. Chitosan gel beads for metal ion recovery. European Chitin Society. France.
- Jamaludin M.A. 1994. Isolasi dan Pencirian-Kitosan Limbah Udang Windu (*Penaeus monodon fabricus*) dan Afinitasnya terhadap Ion Logam Pb²⁺, Cr⁶⁺, dan Ni²⁺ [Skripsi]. Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor.
- Kustiani R. 2005. 25 Juni 2005. 11 Eksportir Udang Diperiksa Amerika. *Koran Tempo*: A22 (1-4).
- Lindblad MS. 2003. Strategies for building polymers from renewable source: using prepolymers from steam treatment of wood and monomers from fermentation of agricultural products [Tesis]. Swedia: KTH Fibre and Polymer Technology, Royal Institute of Technology Stockholm.

- Nurdiani D. 2005. Adsorpsi Logam Cu(II) dan Cr(VI) Pada Kitosan Bentuk Serpihan dan Butiran [Skripsi]. Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor.
- Rahayu Sri. 2000. Mempelajari Pengaruh pH, Penambahan CaCl₂, dan AlginatTerhadap Karakteristik Gel Cincau Hijau (*Cyclea barbata* L. Miers) [Skripsi]. Fakultas Teknologi Pertanian. Institut Pertanian Bogor.
- Schmuhl R dkk., 2001. Adsorption of Cu(II) and Cr(VI) ions by chitosan: kinetics and equilibrium studies. Studies Water SA 27 (1).
- Sugita P. Sjacriza A. Lestari Sl. 2006a. Sintesis dan Optimalisasi Gel Kitosan-Gom Guar. *J. Nature* [In progress].
- Sugita P. Sjacriza A. Rachmanita. 2006b. Sintesis dan Optimalisasi Gel Kitosan-Karboksimetil selulosa. *Prosiding Seminar HKI*,
- Wang T, Turhan M, Gunasekaram S. 2004. Selected properties of pH-sensitive, biodegradable chitosan-poly(vinyl alco-hol) hydrogel. Society of Chemical Industry. *Polym Int* 53: 911-918.