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1. Introduction 

We employed the Alternating Conditional Expectations (ACE) technique (Breiman & Friedman, 1985) to 
relax the assumption of model linearity. By generating non-restrictive transformations for both the dependent 
and independent variables, ACE develops regression models that can provide much better model fits 
compared to models produced by standard linear techniques such as Ordinary Least Squares. The ACE 
transformations can reveal new information and insights on the relationship between the independent and 
dependent variables. 

The objective of fiilly exploring and explaining the effect of covariates on a response variable in regression 
analysis is facilitated by properly transforming the independent variables. A number of parametric 
transformations for continuous variables in regression analysis have been suggested (Box and Tidwell, 
1962;Kruskal, 1965; Mosteller and Tukey, 1977; Cook and Weisberg, 1982; Carroll and Ruppert, 1988; 
Royston, 2000). 

In this paper, we introduce the ACE algorithm for estimating optimal transformations for both response 
and independent variables in regression and correlation analysis, and illustrate through two examples that 
usefulness of ACE guided transformation in multivariate analysis. The power of the ACE approach lies in its 
ability to recover the functional forms of variables and to uncover complicated relationships.  

2. The Alternating Conditional Expectation Methods 

Non-parametric regression techniques are based on successive refinements by attempting to define the 
regression surface in an iterative fashion v^ile remaining 'data-driven' as opposed to 'model-driven'. These 
non-parametric regression methods can be broadly classified into those v\4iich do not transform the response 
variable (such as Generalized Additive Models) and those which do ACE. 

The ACE module produces an output of graphical transformations for the dependent and independent 
variables. ACE will also indicate the adjusted and imputed p-value of the model based on these graphical 
transformations (all p-values are really only the computational counterparts of the p-values in a standard 
regression model, but they are useful for between-model comparisons as well as for variables selection). An 
ACE regression model has the general form: 

 

where ^ is a function of the response variable, Y, and (jh are fiinctions of the predictors JC, i =  1, ...,/>.. 
Foragivendataset consisting of a response variable 7 and predictor variables Jfi,... , Xp, the ACE algorithm 
starts out by defining arbitrary measurable mean-zero transformations 0 {Y), (^i(Xi),... , 0^(X^).The error 
variance { i )  that is not explained by a regression of the transformed dependent variable on the sum of 

transformed independent variables is (under the constraint,      (r)J = i) 

For fixed 0 minimizing is Q { Y )  =  E{0(X) | 7}. This is the key idea in the ACE algorithm, it begins with 
some starting fiinctions and alternates between these two steps until convergence (Hastie dan TibshIrani, 
1990). 

The ACE algorithm approaches this problem by minimizing the ^. If only there is a predictor 
variable X, so it needs minimizing ^{^(7) - (S>{X )Y • For fixed 0, the minimizing is 0(X) = E{e i Y )  \  X ] .  

mailto:kusmans@ipb.ac.id
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3.  Data Simulated 

In this study, we apply the ACE technique to a synthetic example - case for which we know the 
correct answers - to demonstrate how the ACE algorithm can be used to identify the functional relationship 
between dependent and independent variables. This synthetic example is a multivariate case with four 
predictor and 250 observations generated from the following model 

Y  = 5 + exp(X1) + |X2| + X3
2 + X4

3 + ε 
where X1 ~ uniform(-5,5),   X2 ~ uniform(-20,20),  X3 ~ uniform(-5,5), and X4 ~ uniform(-4,4) and ε is 
independently drawn from a standard normal distribution N(0, 1). Note that the plots in Figure 1 do not 
reveal any obvious functional forms for either the dependent variable or predictors, even though X1, 
X2, X3, and X4 are statistically independent. Under such circumstances, direct application of linear 
regression is not appropriate. 

 
Figure 1. Scatterplots of simulated dataset (each predictor v.s. dependent variable) 

To check if the ACE algorithm can recover these functions, we applied the algorithm to this simulated 
data set and the results are plotted in Figure 2. Clearly, ACE is able to recover the corresponding 
functions. A regression of the transformed dependent variable on all the transformed covariates results in 
all parameter coefficients of the independent variables being positive and close to: 

 
Figure 2. Scatterplots of ACE algorithm results (optimal transformation) 

 
This results is indicating that the optimal parametric transformations have achieved. The ACE transformed 

variables has an adjusted R2 of 0.995, considerably better than the value of 0.651 obtained using OLS. Note 
that in theory ACE cannot produce a worse fit than ordinary regression, because if no transformations are 
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found to be necessary (i.e., the ordinary regression model is appropriate), then ACE would simply suggest 
nearly linear transformations for all the variables. 

4.  Conclusions 

The ACE algorithm is a non-parametric automatic transformation method that produces the maximum 
multiple correlation of a response and a set of predictor variables. The approach solves the general problem 
of establishing the linearity assumption required in regression analysis, so that the relationship between 
response and independent variables can be best described and existence of non-linear relationship can be 
explored and uncovered. An examination of these results can give the data analyst insight into the relationships 
between these variables, and suggest if transformations are required. 

The ACE plot is very useful for understanding complicated relationships and it is an indispensable tool 
for effective use of the ACE results. It provides a straightforward method for identifying functional 
relationships between dependent and independent variables. There will often be a number of potential 
candidates for transformation of a variable suggested by the ACE plot that fit the data well according to R2.  
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