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PREFACE

Since November 2004 in South-East Asia region had stood organization of profession which
called Moslem Statisticians and Mathematicians Society in South East Asia (MSMSSEA) and is
centered in town Bandung. This organization open to mathematicians and statisticians from
whole world which wish to congregate gives contribution in increasing peace and prosperity in
South-East Asia region especially and world generally through various mathematics scientific
and statistics.

In the effort realizing purpose of the MSMSSEA, cooperates with Institute for Mathematical
Research - Universiti Putra Malaysia, Malaysian Mathematical Sciences Society, Indonesian
Mathematics Society, and UNISBA has carried out "The First International Conference on
Mathematics and Statistics ( ICOMS-1)" on Junes 19 - 21, 2006, in Hotel Jayakarta Bandung.
This conference attended by one hundred mathematicians and statisticians from various
country, like from Australia, India, Canada, Malaysia, Pakistan, Iran, and Indonesia its self.

Some good articles in mathematics study, mathematics education and also statistics
presented in this proceedings.

Hopefully is of benefit to all readers.

Yours faithfully,

President MSMSSEA,

] prn]

Prof. Dr. Maman A Djauhari
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Estimation of Spatio-Temporal Additive Model Using Mixed
Model Approach with Application to Ozone Data
in Surabaya City

Anik Djuraidah and Aunuddin
PhD student at Bogor Agriculture Institute
Lecturer at Satistics Departement of Bogor Agriculture Institute

Abstract

Spatio-temporal models arise when spatial data are collected over continuous time, so that one must
take account of spatial correlations as well as temporal correlations. This research is focused in
modelling spatio-temporal data using additive models. Spatio-temporal additive models are
combination of time series additive models and spatial additive models. Functional form of predictors
and response are modeled using P-spline. Since P-spline has connection with linear mixed models,
the estimation of spatio-temporal additive model can be approached by linear mixed models. The
models are applied to air pollution Ozone from AQMS in Surabaya. In modelling Ozone we add
meteorological factors as covariates. This resulting model is used for spatial interpolation in
unmonitored location. The study show that addition meteorological factors in spatio-temporal models
improved the accuracy of models, although spatial interpolation are similar with models without
meteorological factors.

Key words: additive model, time series additive model, spatial additive model, P-spline, linear mixed

model, smoothing parameter.
1. Introduction

Spatio-temporal data are spatial data which are observed over continuous time. Spatio-
temporal data consists of temporal correlations and spatial correlations which should be
accounted in modelling. There are a lot of spatio-temporal models, expanded from the
parametric method until nonparametric method.

The goal of nonparametric smoothing techniques is to estimate the regression function s
in a relationships between a response variable y and a covariate x, expressed in the model

Y; =s(xi)+£i (l)

where ¢ denotes independent random error. When several covariates are present, Stone
(1985) proposed to extend the idea of multiple regression into a flexible form known as an
additive model. For data {(yi,xu,- -, xip), i=1,--, n}, the models can be represented as

Y; =5, +isi(xﬁ)+ & (2

j=1

Where the covariate X; has its own associated component s ; and the regression function

is constructed from the combination of the components. The errors gare assumed to be
independent. Hastie and Tibshirani (1990) proposed to extend the additive model to a wide
range of distribution families known as GAM (generalized additive models). However, whilst it
is flexible and efficient, the GAM framework based on backfitting with linear smoothers
presents some difficulties when it comes to model selection and inference.

Eilers and Marx (1996), Ruppert and Carroll (1997) proposed low rank dimension of
smoothing spline known as P-spline or penalized spline regression. P-spline have the
advantage that they require only a small set of spline basis functions for each covariate with a
penalty to avoid undersmoothing and can be represented as mixed models which have been




desenbed e Wang (1998), Fan dan Zhang (1998), Brumback et al (1999), Vebyla et al (1999),
Frenchet al (2001), Kamman dan Wand (2003), dan Wand (2003).

Mixed-effects models provide flexibility of fitting models with various fixed and random
elements. The application of mixed-effects models to practical data analysis has greatly
expanded with the subsequent development of theory and computer software. The parameters
in these models are typically estimated by maximum likelihood (ML) or restricted maximum
likelihood (REML). Because of a simple mathematical connection between P-spline models and mixed
models, mixed model software can be used to fit P-splines. In the linear mixed models framework
the fitted penalized splines are BLUP (best linear unbiased predictors) and the smoothing
parameters are ratios of variance components which can be estimated by ML or REML. (Wand,
2003).

The aim of the research is modelling spatio-temporal additive models for Ozone air
pollution in Surabaya. The data are hourly ozone concentration measured in pg/m3 from the 5
monitoring stations that observed from January 2002 up to December 2002. Meteorological
factors play an important role in studies of air pollution because of its role as a possible
confounding factor, then we include them as covariate in the models. Functional form of
covariates and response are modeled using P-spline. The estimation of spatio-temporal additive
model using linear mixed models approach. The resulting models represent a fusion of time-
series additive models and spatial additive models with meteorological factors as covariates.

2. Spatio-temporal Additive Models

Spatio-temporal additive models are combination of time series additive models and
spatial additive models. Time series additive model is an extention of time series model that
allow us to modelling nonlinear of lagged variables (Fan dan Yao, 2003; Huang dan Shen, 2004).
Additive AR(2) denoted by AAR(2) is AR(2) with functional form of lagged variables can be

modeled by parametric, nonparametric, or both. Suppose Vi is Ozone concentration at time-t
and location-i. AAR(2) is given as

Yo =h (Vi) +HY0:) + 8y ®)
where f(y, ;) and f, (Y1.5;) are smooth function of lag 1 and lag 2 of y.

Spatial additive models is an extention of kriging and thin—platé spline. Kriging is surface
estimation that used for spatial interpolation at an arbitrary location. Thin-plate spline is
smoothing surface estimation (Green dan Silverman, 1994). Kriging and thin plate spline can be

stated as linear combination of radial basis functions (Kamman dan Wand, 2003). Suppose y;

is Ozone concentration at location X; = (x“,xZi)e R2, spatial additive models of kriging dan
spline-2 is given as

Yi = Bo + Bixy; + Byxy; "'S("i)"“‘:i (4)
Where B :(ﬁ), A ,Bz)' is parameter vector, S(xi) in kriging is stochastic process, while in
thin plate spline is radial basis function.

By combined time series additive models (4) and spatial additive models (3), we get
spatio-temporal additive models

Yu=§ (.‘/t—l,i)+ f, (_‘/t-z,i)'*' Bo+ Bixy; + Byx,y; + S("i)"’ Eri ®)

SRS R
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In model (5), we can add other covariates like meteorological facors. Suppose g(m) is

functional form of y with temperature m, aa is indicator variable of wind directions, ch is
indicator variable of rainfall, so that we get spatio-temporal models

Y =h (}/:-u )+5 (y(-z,i )+ By + Bixy; + Byxa; +5(x; )+ g(m:,i)+ aa; +chy; +&,; (6)
3. Estimation of Spatio-temporal Additive Models

Suppose smooth function f; and f; in equation (3) are modeled by linear spline

K, K,
= y1 _ eyl y2 a2
Yii =G + Y, 4 +Z”k Ve =KL ), Yo +Zuk (Yegi — &), + Eii @)
k=1 k=1
1 2.
where “=(a01‘71:a’2,u{'1, ,uzuulyll ,u]V(Z )15 parameter vector,

(w)? =wPI(w=>0) is truncated power function with I is indicator function and p=1,
¢ I /q{} and x}% <...< KIZ: are fixed knot for lag-1 and lag-2 respectively.

Component S(xi) in equation (4) can be stated as combination linear of radial basis
function, so that

K,
Yi =P+ Bixy; +Bpxy; +Zu: Co(]lxi _K:")"'gi ®)
ka1

correlatim function for kriging

Where = B=8,,8.,8,,u,.,u* )i i
Co(®) {rzlogrforl]' platespline B (ﬂo B Basuy ux‘)ls parameter

vector, Kj <.. <Ky is knot vector of location variables, and "xi —K|[ is distance from

location-i to knot kj (Djuraidah and Aunuddin, 2006b). For simplicity Comxi -K; u) in (8),

we denotes as z;,, so that (8) can rewrite as

K,
Yi =Bo+ Bixy + BpXy + Y up z +&; ©)

k=1

Combination between spline time series additive models and spline additive models, we
get spline spatio-temporal models, is given as

K K
. y1 ) y2 —xy2
Yii =% Y4, +2uk (Yeeri =KL )y +3Y o +2uk (Vieai —x7), +
k=1 k=1
K,
X X X
Bixyy + ﬂzxz,:,i+z UpZix T €y (10)
k=1

where [3=(06,q,05,,éf ,,@,11{1, '",142, 142, "',dfl, u, -, 142) is parameter vector.

The estimation for additive model with more than one covariates can be generalized
from additive model with one covariate (Djuraidah and Aunuddin, 2005, 2006a). The

estimator f} is solution of penalized spline regression criterion
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J&)=ly-Cpl+ pAp (11)
where Cis design matrix of equation (10)

=

s s 3 3 G o Gl G 2o+ B,
A=diag0, 0, 0, 0, 0, 4,1 , A T, Ak,) whee 1,4 s A are  smoothing

£ Y2
parameter of lag-1, lag-2, spatial respectively. The estimator of penalized spline regression is
y=C(C'C+A)"'Cy (12

and

Penalized regression spline in equation (10) can be represented in linear mixed models by
treated coefficient of truncated spline basis u}',u}?, and u; as random effect in linear mixed
models. Set up

Y 1 1 2 2 \
Y=(ao,a1,az,ﬂ{‘,,8§), b=(u{ o Mg W, e Ul Uy, e, u,i,)

X=(1, Yewir Yeair Xigir Xpyy )ISISI\JSiSS’

Zz((%—u“’ql)# i (‘A—u”“lg)« Uhas =) - (K-Zi—"iz)v Ziy "y Z:ug)umm

the models (10) can expressed in standard form of linear mixed models

y=Xy+Zb+c¢ (13)

0
2
whereEb _ 0 and ¢gy b _ 0 0,1 0 0
el |0 0 0 oI 0
0 0 0 0 o1
The spatio-temporal additive models in (10) can be obtained by applying REML to 7,

ag ; O'il 7 O'f,z ’ 0'3 » and best prediction of b. Smoothing parameter of spatio-temporal model

is ratio of two component variance, is given as

c o? o
ﬂ,y] :—2, Ayl =U; ’ dan },x = :2 (14)
y2

o'yl o x

2 2
3

4. Application to Air Pollution Ozon

Regional prediction of tropospheric Ozone concentration is an important problem in
environtmental monitoring. The data are hourly concentrations of Ozone (ng/m3) monitored in
Surabaya from January 2002 up to December 2002. The data have been monitored by AQMS
(ambient air quality system) network for monitoring and evaluation of air pollutans in
Indonesia. Surabaya has 5 fixed monitoring station that placed in the background area, to
describe the real air pollution condition in Surabaya. Meteorological data included in modelling
are temperature, wind direction, and rainfall.

Building spatio-temporal model consists of two steps. The first step is to find the best
time series additive models, the second steps is to find the best spatial additive model from

B e
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residual model in step 1. After that, we combine model in step 1 and model in step 2. The
criterions of choosing the best model are AIC (Akaike Information Criteria) of models, and ACF
(autocorrelation) function, PACF (partial autocorrelation) function, spatial correlation function of
residual.

The result summary of some spatio-temporal model is displayed in Table 1. Spatio-
temporal models with meteorological factors (Model 3 and Model 4) have smaller AIC than
models without meteorological factors. AIC and smoothing parameter of Model 3 and Model 4
are equal, except for smoothing parameter of spatial. The differences values caused by the
difference trend of radial basis function’s.

Tablel. Summary of AIC and smoothing parameter of spatio-temporal models

Smoothing Parameter

Model Component model AIC
Lag-1 | Lag-2 | Hour | Temperature | Spatial
1 AAR(2)1) + Spline-2 (K=5) 20203.2 | 2.456 | 2.318 | 2.112 - 18.930
2 AAR(2) + Kriging(K=5) 20203.1 | 2.455 | 2.318 | 2.112 - 4.353
3 AAR(2) + Spline-2(K=5)
+(M)2) 19563.7 | 2.996 | 2.498 | 2.148 19.413 17.061
4 AAR(2) + Kriging (K=5)+ (M) 19563.6 | 2.996 | 2.498 | 2.148 19.413 3.929

1) AAR(2) = Lag-1 Ozon(K=5) + Lag-2 Ozon(K=5) + hour (K=23)

2) f(M) = SH(K=5)+ AA(I) + H(I), K= number of knot, where SH = Temperature ,AA = wind
direction,

H = rainfall, I = indicator variable

The spatial correlation, ACF, and PACF plot of residual Model 3 and Model 4 are equal,
shown in Figure 1a, 1b, and 1c respectively. The spatial correlation plot shows that the values
are small, although still has exponential trend but the R? of model is small. ACF and PACF plot
of residual have small value and random pattern.

The smoothing parameter is ratio of two component variances, has been explained in
equation (14). Thin-plate spline has big value, it means that spatial variance’s is small, so that
thin-palte spline has smooth response curve. The opposite of thin-plate spline, kriging has
rough response curve. Thin-plate spline and kriging are used to spatial interpolation, so that
we should choose the best one. We compare the standard error of the two methods, shown in
Figure 2a and Figure 2b. The standard error pattern of kriging can described the variation in an
arbritary location. However the standard error of thin-plate spline can not described it. Based
on this results, the best spatio-temporal model for Ozone is Model 4.
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Figure 1. (a) Spatial correlation plot, (b) ACF plot, (c) PACF plot of residual Model 4
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Figure 2. (a) Standard error of kriging (b) standard error of thin-plate spline.

Contour of Model 2 and Model 4 for August 31, 2002 at 8 am, 9 am, and 6 pm, are shown
in Figure 3a up to 3f. The figure show that spatial prediction of Model 2 and Model 4 are
similar.
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Figure 3. Contour of Model 2 at (a) 8 am, (b) 9 am, (c) 6 pm; Contour of Model 4 at (d) 8 am,
(€) 9 am, (f) 6 pm

5. Conclusion

Spatio-temporal additive models can be used for modelling data that contains spatial and
temporal correlation. Estimation of additive models using linear mixed models approach give
simplification in computation and inference. Addition meteorological factors covariate to
spatio-temporal model can reduce AIC, although spatial prediction is similar with model
without meteorolgical factors. The response curve of spatial prediction using thin-plate spline is
smooth, but using kriging is rough.
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