PEMANFAATAN BAKTERI RIZOSFER UNTUK PROTEKSI CABAI TERHADAP INFEKSI GANDA VIRUS

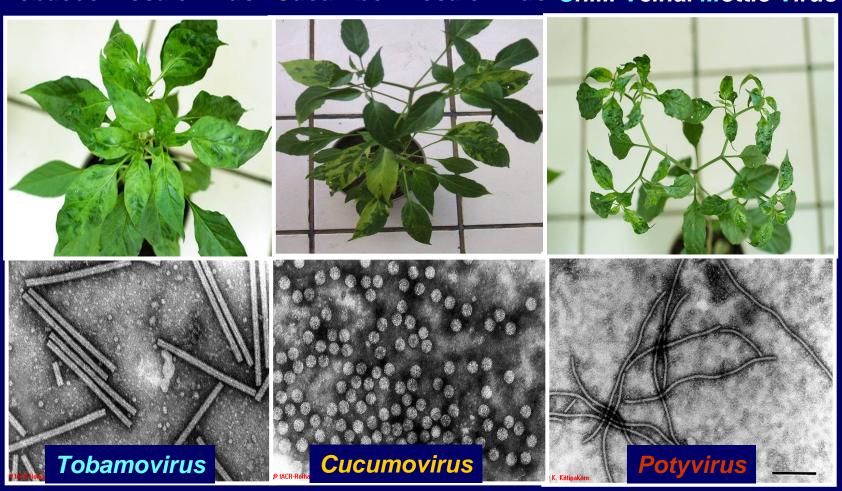
TRI ASMIRA DAMAYANTI NISA R. MUBARIK HENDRA PARDEDE TRIAS KATERINA

(Hayati, 2007 Vol.14, hal 105-109 & J. ISSAAS, 2008 Vol.14, hal 92-100)

DEPARTEMEN PROTEKSI TANAMAN FAKULTAS PERTANIAN INSTITUT PERTANIAN BOGOR

PLANT VIRUS

- Submicroscopic particles
- Contain RNA or DNA (ss or ds)
- Nucleic acid protected by coat protein form virion
- Do not have organelle cells
- Obligate parasite (only living in live cells)
- Mainly replicate in viroplasm/cytoplasm


Symptoms of virus infection

Healthy ChiVMV Mix CMV TMV

SYMPTOM AND VIRAL PARTICLES

Tobacco Mosaic Virus Cucumber Mosaic Virus Chilli Veinal Mottle Virus

SYMPTOM OF MIX INFECTION TMV & ChiVMV

Management of virus diseases:

- Resistant varieties
- Cultural practices
- Eradication of vectors
- Genetically engineered crops
- Cross protection

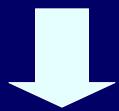
Root colonizing bacteria?

Objectives: To utilize the potential PGPR isolates to protect hot pepper against multiple infection of virus

Root colonizing bacteria - Rhizobacteria

- >Abundantly present in rhizosphere
- >Live from plant root secretion
- >Stimulate plant growth,

referred as:


Plant-Growth Promoting Rhizobacteria (PGPR)

The roles of PGPR

- Nitrogen fixation
- Promoting plant growth
- Protecting plants from infection by pathogen (antibiosis, ISR etc)

Large-scale application of PGPR reduce the use of chemical fertilizer and pesticides; and increase crop yield

HOW IS PGPR SUPPRESS THE DISEASE?

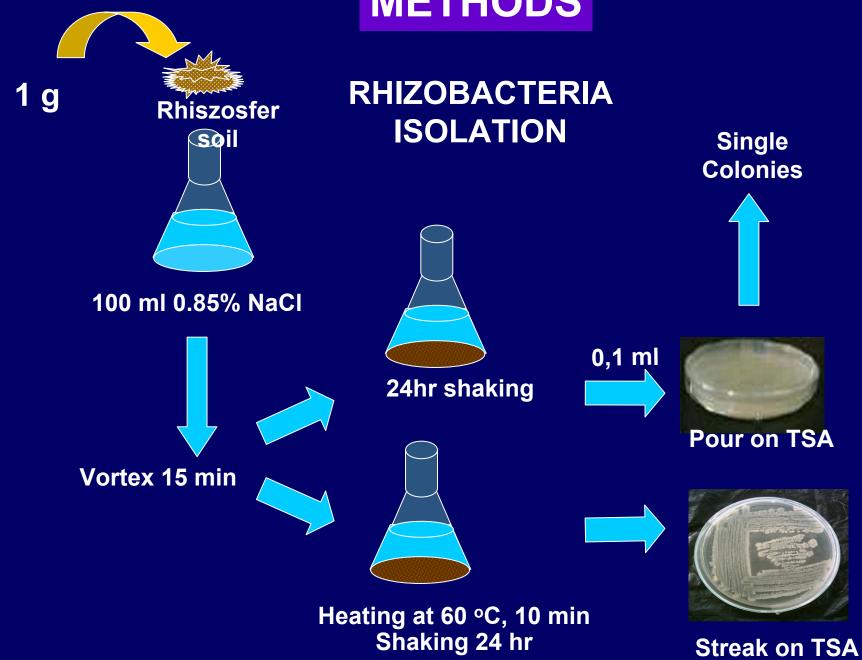
Induced Systemic resistance (ISR)

ISR → an increased resistance to disease that develops systemically throughout plants after appropriate stimulation (Hammerschmidt and Kuc, 1995)

PGPR as stimulant

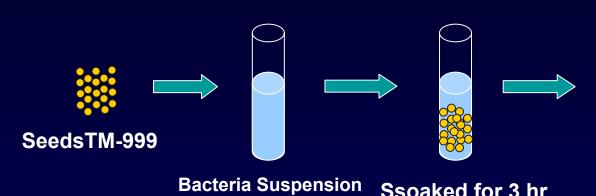
Seed treatment, Soil drench, Foliar spray, Combination

Challenge inoculation of pathogens


Elicits Plant's defense response

Decrease disease incidence, severity, symptom expressions

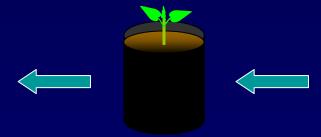
MECHANISMS


- Alters host physiology and metabolic responses, fortifies plant cell wall strength
- Antibiosis
- ♦ Increased SA → PRs gene, chitinase etc
- Increased Jasmonate Acid and ethylene, peroxidase, phytoalexin, enhance ability to lignify
- Siderophores (pyoverdine, pyoceline, SA)
- Competition for iron

METHODS

Seed treatment and cultivation

Seedling + a drop bact. suspension



1 x 10⁹ cfu/ml

Placed in greenhouse

Ssoaked for 3 hr

Pot Sterile Soil : cow-dung = 1:1

2 Weeks after

Methods:

Evaluation of plant growth characteristics

- Plant height at 1 day prior- and at 2, and 4 weeks post-virus inoculation (wpi)
- Number of Leaves
- Number of flowers and fruits
- Plant fresh weight

2 WPI = 6 WAP

Method: Viral Inoculation

Infected leaves

Grind + bufer fosfat pH 7 [1:10 (b/v)]

Inoculum

Inoculation

Plants at 4 WAP

Methods: Disease assessments

1. Disease incidence (%)

$$I = \Sigma \frac{n}{N} \times 100\%$$

I = disease incidence (%)

n = number of infected plants

N = total number of inoculated plants

2. Disease severity rating made at 2 wpi and 4 wpi. It is performed with mock inoculated plants as standard.

Disease severity rating scales

- 0 = no symptom
- 2 = leaves with mild mosaic symptom
- **4** = leaves with severe mosaic symptoms
- 6 = leaves with mosaic and deformation
- 8 = leaves with severe mosaic, deformation and yellowing along veins
- 10 = leaves with severe mosaic, deformation, yellowing along veins and abrupt growth reduction

3. Detection of Viral Protein by ELISA

ELISA (Enzyme Linked-Immunosorbent Assay)

Coating 1 st AB

Washing 4-8 times

Washing 4-8 times

2nd AB conjugated with enzyme

Washing 4-8 times

Substrates addition (yellow)

ELISA Reader at OD 405 nm

4. PEROXIDASE ENZYME ACTIVITY

Measured by Spectrophotometer at 470 nm wavelength; every 30 seconds for 3 minutes

5. ETHYLANE PRODUCTION

Gas Chromatography methods at Balai Besar Pasca-Panen Cimanggu, Bogor

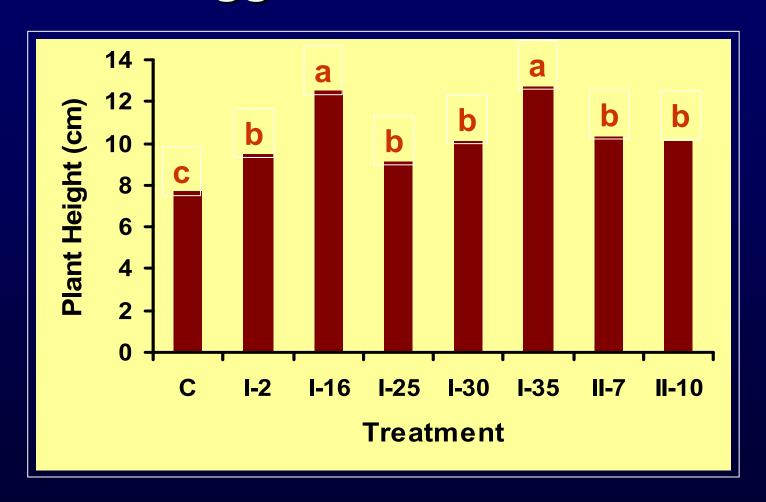
Samples measured at 5 days post viral inoculation

Lasi dan Pembahasan

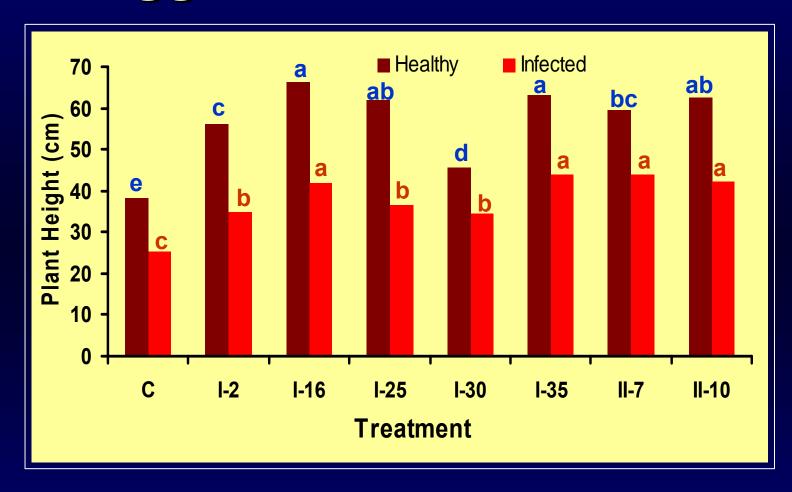
RHIZOBACTERIA ISOLATES

55 isolates obtained; 17 are gram positive and 38 are gram negative (14 isolates are pathogenic, 5 isolates were unable to re-cultured)

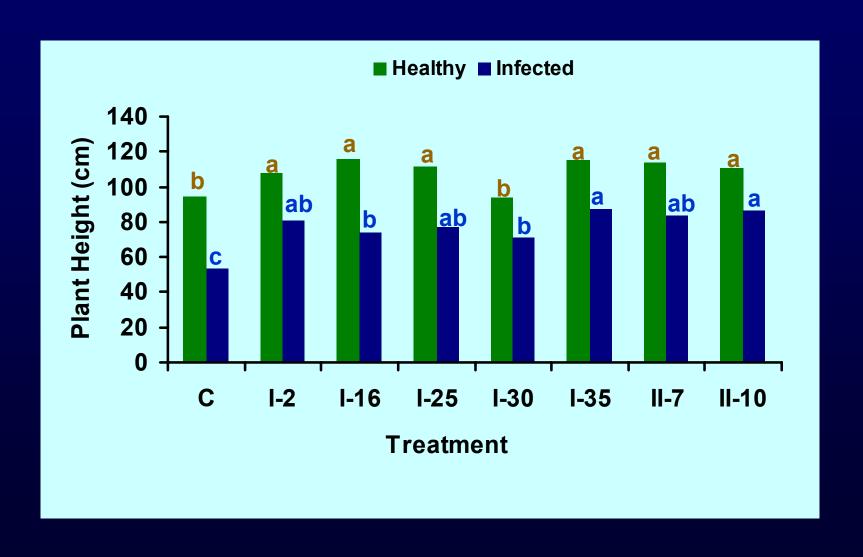
36 isolates were tested for inducing seed germination



Bacterized-seeds showed comparable germination rate, but better seedling vigor and fitness than untreated control


7 isolates were evaluated their ability to protect pepper against 3 viruses

Tinggi Tanaman 1 HSI


HSI – Hari Sebelum Inokulasi Virus

Tinggi Tanaman Pada 8 MST

MST – Minggu Setelah Tanam

TINGGI TANAMAN PADA 12 MST

TANAMAN SEHAT

Pembibitan

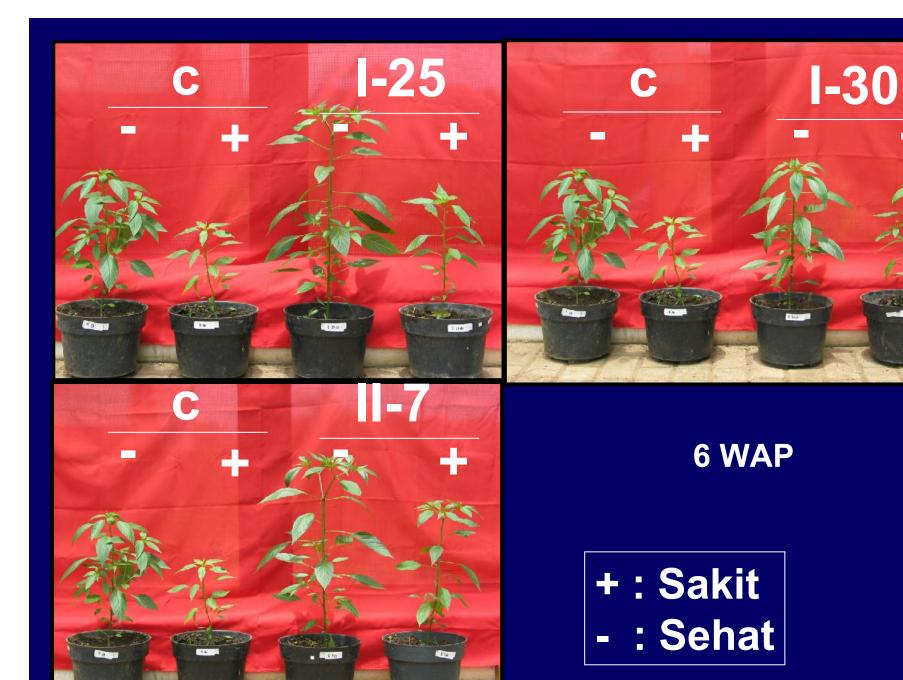
12 MST

TANAMAN SEHAT

Pembibitan

8 MST

C I-16 I-35 I-35 I-16 c



6 MST

+: Sakit

- : Sehat

8 MST

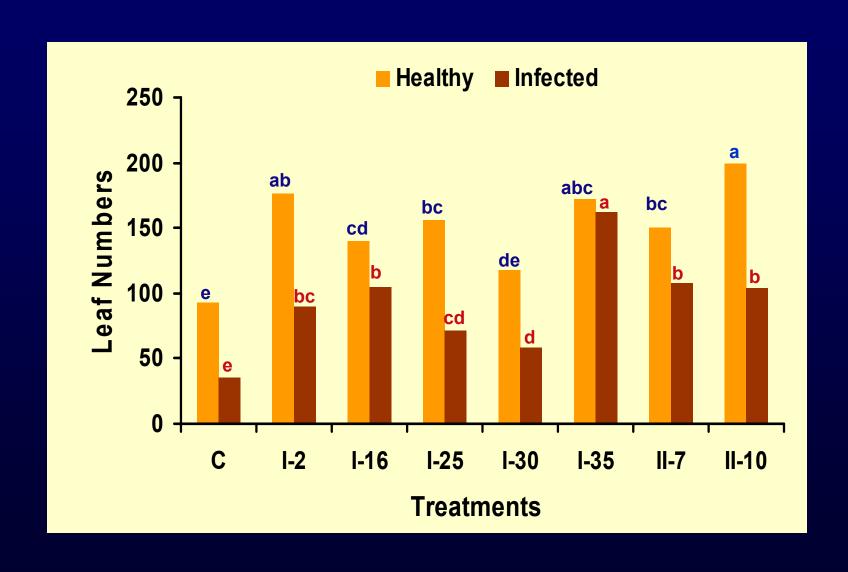
- +

+ -

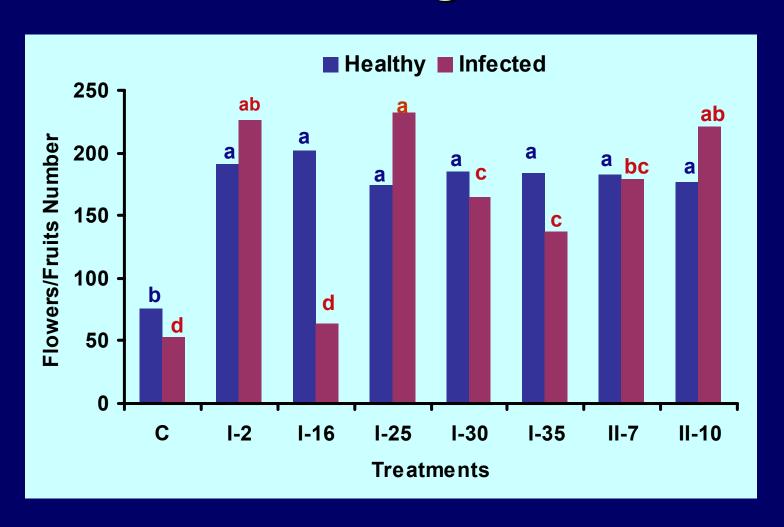
I-35

C

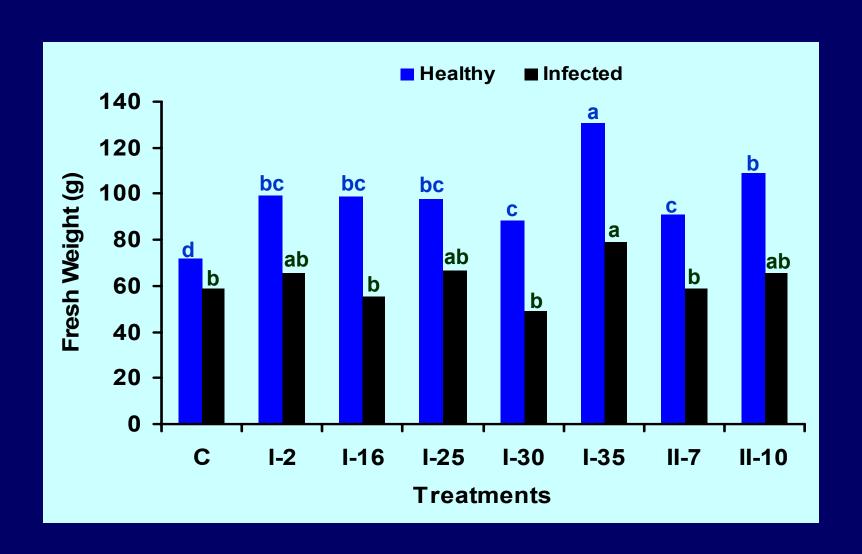
- +


- +

I-16


C

+ : Sakit ; - : Sehat


Jumlah Daun

Jumlah Bunga/Buah

Bobot Basah

Disease Assessments

A. Nilai Absorban ELISA

	TMV		ChiVMV	
Treatment	2 MSI	4 MSI	2 MSI	4 MSI
C (-)	0.195	0.195	0.061	0.061
C (+)	1.624	1.895	0.326	0.472
1.2	1.889	1.942	0.187	0.386
I.16	2.198	1.765	0.080	0.074
1.25	2.100	1.769	0.221	0.410
1.30	1.810	1.712	0.234	0.360
I .35	2.039	1.751	0.089	0.065
11.7	1.955	1.660	0.195	0.358
II.10	1.925	1.770	0.187	0.341

Positive if EAV = 2 x C (-) (Orange type)

B. Disease Incidence and Severity

Treatment	Disease	Disease	
Treatment	Incidence (%)	Severity	
C (-)			
C (+)	100	5.60 a	
I.2	100	2.00 bc	
I.16	100	1.67 c	
I.25	100	3.33 b	
I.30	100	2.67 bc	
I.35	100	1.67 c	
II.7	100	3.33 b	
II.10	100	2.67 bc	

C. PEROXIDASE ENZYME ACTIVITY AND ETHYLENE PRODUCTION

Treatments	PO. Enzyme Activity (U/mg/min)		Ethylene Prod. (umol/gr)	
	Healthy	Infected	Healthy	Infected
С	0.76	3.42	0.14	0.16
I - 2	3.30	3.50	0.19	0.19
I - 16	2.55	5.70	0.10	0.18
I - 25	5.40	3.60	0.12	0.16
I - 30	4.20	6.60	0.32	0.20
I - 35	4.04	7.74	0.25	0.33
11 - 7	4.10	9.40	0.08	0.16
II - 10	2.70	1.40	0.02	0.30

Identification of Rhizobacteria

Morphological Characters & 16S rRNA sequences

Code	Species	Accession No.
I – 2	Bacillus cereus	AB288105
I - 25	B. cereus	AB288105
I - 35	B. cereus	AB288105
I – 16	Brevibacterium sanguinis	AB288106
I – 30*	B. macerans	_
11 -7	Acinetobacter sp 11 -7	AB288107
II – 10	Stenotrophomonas sp II-1	O AB288108

^{*} Based on morphological characters & Microbact-Kit test only

CONCLUSIONS

- All tested isolates could enhance plant growth characters and could suppress the severity, even infected by viruses
- Bacillus cereus (I-35) and Stenotrophomonas sp II- 10 were the most potential PGPR which able to protect hot pepper against multiple infection of virus

ACKNOWLEDGEMENTS

- SEAMEO BIOTROP & ITSF
- PHK B Dept. of Plant Protection, IPB
- Prof. Tetsuro Okuno & Dr. Kazuyuki Mise
- Mr. Edi Supardi Teknisi

