KOMPONEN VOLATIL DAN KARAKTERISASI KOMPONEN KUNCI AROMA BUAH ANDALIMAN (Zanthoxylum acanthopodium DC.)

[Volatile Aroma Constituents and Potent Odorant af Andaliman (Zanthoxylum acanthopodium DC.) Fruit]

C. Hanny Wijaya 11, Irene Triyanti Hediprodjo 22, dan Anton Apriyantono 11 13 Jurusan Teknologi Pangan dan Gizi, Fateta-IPB 23 Alumni Jurusan Teknologi Pangan dan Gizi, Fateta-IPB

ABSTRACT

Andelman, a wild spice well known in Northern Sumeters, has a fresh citrusy and warm sweet poppery odor. This research was conducted to analyze potent odorant from andelman meceration extract using GC-MS, GC/O and arome extract dilution analysis (AEDA) method. Monoterpanes were the main constituents among the 24 identified components by GC-MS. Results of AEDA revealed that citronelial and limonene had the greatest impact on the arome of andeliman with flavor dilution factor 128 and 32. β-myrcene, 2-β-ocimene, linelool, β-citroneliol, neral, geraniol, geranial, geranyl acetate, an unknown compound, and a secquiterpane also contributed to andeliman fresh citrusy and warm sweet pappery aroma.

Key words: andalman, volatiles, key compounds and aroma

PENDAHULUAN

Andaliman adalah rempah-rempah liar yang tumbuh di daerah Sumatera Utara, Indonesia. Andaliman mempunyai aroma sitrus yang kuat, sehingga orang di daerah Sumetera Utara menggunakan andaliman untuk menghilangkan bau amis ikan/daging mentah. Penelitian tertang andaliman masih sangat terbatas dan potensi andaliman sebagai flavor alami belum diketahui secara luas.

Analisis Gas Chromatography-olfactometery (GC/O) ad& salah satu cara yang baik untuk menentukan komponen kunci dalam flavor suatu bahan pangan (Acree, 1993). Akan tetapi hasil dari analisa GC/O hanya dianggap valid jika aroma dari ekstrak mirip dengan bahan pangan yang diakatrak. Oleh sebab itu pemilihan metode ekstrakai sangat penting karana menentukan komponen yang terekatrak (Priser et al. 1999). Teknik ekstraksi yaitu maserasi, destilasi vakum, headspace dan Lickens-Nickerson, banwak digunakan untuk mengekstrakai komponen aroma dari komponen pangan (Reinecclus. 1997). Metode pemekatan headspace mempunyai prinsip memekatkan uap heedspace dari produk pangan. Metode maserasi merupakan cara ekstraksi yang baik untuk bahan pangan yang senetif terhadap suhu tinggi. Namun kerugian dari metode ini adelah komponen non volatil juga ikut terekstrak sehingga menyulitikan untuk dianatisa dengan Gas Chromatography. Metode ekstraksi Lickens-Nickerson merupakan kombinasi antara metode destilasi dan ekstraksi dengan palarut. Metoda Lickens-Nickerson tidak cocok untuk bahan pangan yang termolabil karena dapat mengakibatkan karusakan/kehilangan komponen flavor.

Metode yang terekhir, destilasi vakum, adalah modifikasi deri metode destilasi air dengan menggunakan pompa vakum sehingga titik didih larutan dapat diturunkan. (Movier, 1991).

Tujuan dari penelitian ini adalah untuk menganalisa komponen volatii andaliman dan mengkarakterisasi komponen kunci aroma dart flavor andaliman. Oleh karena itu untuk mendapatkan ekstrak flavor andaliman yang mendekati aroma andaliman segar, terlebih dahulu harus dicari metode ekstraksi yang tepat. Setelah didapatkan ekstrak flavor yang baik mendekati aroma andaliman segar dilakukan karakterisasi komponen volatil andaliman dengan menggunakan GC-MS. Selain itu dilakukan penentuan komponen kunci aroma andaliman dengan menggunakan metode Aroma Extract Dilution Analysis (AEDA).

METODOLOGI

A. Behan dan Alat

Bush andaliman segar dipercieh dari Pasar Anyar, Bogor. Bahan kimia yang digunakan adalah dietil eter (Merck), kiorotorm, asaton, etanol, natrium sulfat anhidrat (Kanto), heksana (Merck), etil asetat, standard hidrokarbon (Ce-C₂₀, tanpa Ce dan Ce), CO₂ kering, gas nitrogen dan sitika gel (Merck).

Alat yang digunakan adalah neraca, waring blender, kolom vigreux, seperangkat alat akatrakai headspace, destilasi vakum, Licken-Nickerson, gas chromatography-mass spectrometry, gas chromatography-olfactometry, dan kolom untuk kromatografi.

B. Metode

1. Ekstraksi Komponen Volatil

Ekstraksi buah andaliman segar dilakukan dengan beberapa metode, yaitu metode headspace, maserasi, Lickens-Nickerson dan destilasi vakum.

a. Metode headspace.

Buah andaliman dihancurkan dengan menggunakan waring blender, lalu 250 g hancuran andaliman dimasukkan ke dalam labu sampel 2 liter. Aliran gas nitrogen dilewatkan dalam headspace sampel dengan laju 4 liter/jam (±66,7ml/menit). Komponen volatil kemudian ditangkap dan ke dalam 25 ml pelarut dietil eter yang terbagi dalam dua tabung. Pelarut tersebut kemudian didinginkan dengan campuran CO2 kering dan aseton. Ekstraksi dilakukan selama 3 jam pada suhu ruang, dipekatkan dengan destilasi fraksional kemudian menggunakan kolom vigreux dengan suhu 5°C lebih tinggi dari titik didih pelarut yang digunakan.

b. Metode Lickens-Nickerson

Andaliman sebanyak 100 gram dihancurkan dengan blender, lalu ditambah 500 ml air (1:5) dan dimasukkan ke dalam labu di atas heater. Pelarut dietil eter sebanyak 50 ml dimasukkan ke dalam labu yang berada di dalam water bath. Masing-masing labu dididihkan pada titik didihnya selama 3 jam.

Ekstrak solven pada labu yang ada di dalam water bath ditambah dengan natrium sulfat anhidrat. Lalu dipekatkan dengan destilasi fraksional menggunakan kolom vigreux dengan suhu 5°C lebih tinggi dari titik didih pelarut yang digunakan.

c. Metode maserasi

Andaliman sebanyak 25 g dihancurkan dengan waring blender lalu direndam dengan 50 ml pelarut organik (dietil eter, kloroform, aseton atau etanol) dan disimpan semalam pada suhu refrigerasi. Campuran andaliman dengan pelarut tersebut dipisahkan dengan kertas saring, lalu ditambahkan natrium sulfat anhidrat ke dalam ekstrak solven agar terbebas dari air. Filtrat itu dipekatkan dengan destilasi fraksional menggunakan kolom vigreux dengan suhu 5°C lebih tinggi dari titik didih pelarut yang digunakan.

d. Metode destilasi vakum

Sebanyak 100 gram andaliman dihancurkan dengan waring blender lalu dicampur dengan air 500 ml, kemudian dimasukkan ke dalam labu sampel 1000 ml. Labu sampel direndam di dalam water bath dengan suhu 60°C dan diberi tekanan vakum 63 cm Hg selama 2 jam. Destilat kemudian diekstrak dengan pelarut organik dengan cara mencampur distilat dengan pelarut 2:8. Pencampuran dilakukan dengan divorteks selama 30 menit, lalu disimpan dalam freezer selama 24 jam. Pelaru dietil eter kemudian

diambil dan dipisahkan dari distitat. Setelah itu dipekatkan dengan destilasi fraksional menggunakan kolom vigreux dengan suhu 5°C lebih tinggi dari titik didih pelarut yang digunakan.

Pernilihan Panelis Semi Terlatih (Amerine et al., 1965)

Setiap calon panelis diajukan beberapa macam standar bahan kimia dengan berbagai bau-bauan untuk dikenali terlebih dahulu. Untuk setiap calon panelis disajikan lima set contoh yang masing-masing terdiri dari tiga contoh. Contoh dikelompokkan berdasarkan pada kemiripan aroma antara masing-masing contoh. Penyajian dilakukan dengan uji segitiga yaitu dua dari tiga contoh tersebut sama sedangkan contoh yang ketiga berbeda. Panelis diminta untuk memilih satu contoh yang memiliki aroma yang berbeda. Pengujian dilakukan dua kali, sehingga panelis membaui total sepuluh set contoh. Panelis yang lolos seleksi membuat maksimal satu kesalahan.

3. Uji Organoleptik

Pengujian organoleptik dilakukan terhadap aroma ekstrak yang dihasilkan dari metode ekstraksi yang dilakukan pada penelitian pendahuluan dengan menggunakan uji skoring oleh 12 panelis semi terlatih. Uji skoring ini bertujuan untuk menentukan metode ekstraksi yang terbaik untuk menghasilkan ekstrak flavor yang menyerupai aslinya. Uji skoring oleh panelis semi terlatih yang sama juga dilakukan untuk memilih pelarut terbaik. Pelarut yang digunakan adalah dietil eter, etanol, choloroform dan aseton. Analisis sidik ragam yang dilanjutkan dengan uji Duncan digunakan untuk menentukan ada tidaknya perbedaan dari metode ekstraksi dan pelarut yang digunakan.

4. Pemurnian

Khusus ekstrak yang diperoleh dengan cara maserasi, dihilangkan impuritiesnya (pigmen, gula dll) dengan menggunakan kromatografi kolom (Wijaya et al, 1999). Adsorben yang digunakan adalah silika gel 60, Merck (ukuran partikel 0.063-0.2mm), sedangkan eluen yang digunakan dietil eter. Kolom yang digunakan mempunyai diameter 1,2 cm dengan tinggi kolom 22,5 cm.

5. Analisa dengan GC-MS

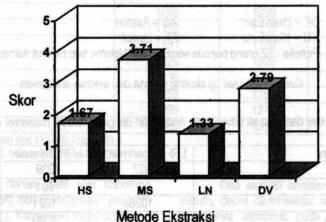
GC-MS merk Shimadzu QP-5000 dengan kolom kapiler DB-5 (30 m, diameter dalam 0,25 mm, tebal film 0,25 μm) dan detektor FID digunakan untuk menganalisa komponen volatil dari ekstrak dua metode terbalk yaitu maserasi dan destilasi vakum. Kondisi GC-MS sebagai berikut : suhu injektor 230°C, suhu detektor 230°C, suhu program 40°C (5 menit), 4°C/menit, 230°C (2 menit). Volume injeksi 1 μl. Nilai LRI (*Linear Retention Indices*)

masing-masing peak dihitung berdasarkan data waktu retensi n-alkana standar (C_8 – C_{22} tanpa C_9 dan C_{19}) yang disuntikkan pada kondisi yang sama dengan kondisi penyuntikan sampel.

6. Kromatografi gas-olfaktometri

Kondisi analisis GC merk Shimadzu GC-9AM, kolom kapiler HP-5 (panjang 30m, diameter dalam 0,32 mm, ketebalan film 0,25 μm), detektor FID. Gas pembawa Helium dengan aliran 1 ml/menit. Suhu injektor 230°C, suhu detektor 230°C, suhu program 50°C (3menit), 8°C/menit, 220°C (5menit). Ekstrak volatil andaliman disuntikkan ke dalam kromatografi gas yang telah dilengkapi dengan sniffing port. Pengujinya adalah 2 orang panelis terlatih. Pemisahan komponen volatil dalam kolom kapiler GC/O dilakukan dengan menginjeksikan 2μL sampel ke dalam instrumen GC.

7. Aroma Extract Dilution Analysis (AEDA) (Ullrich and Grosch, 1987)


Satu seri pengenceran disiapkan dengan faktor pengenceran dua kali. Pengenceran terus dilakukan hingga tidak ada lagi bau yang terdeteksi oleh panelis terlatih. Pengenceran tertinggi dimana suatu komponen masih terdeteksi didefinisikan sebagai Flavor Dilution Factor.

HASIL DAN PEMBAHASAN

1. Pemilihan Metode Ekstraksi Terbaik

Metode ekstraksi terbaik dipilih dari empat metode yaitu metode headspace, maserasi, destilasi vakum dan Licken Nickerson dengan cara uji skoring secara organoleptik oleh panelis semi terlatih. Berdasarkan hasil uji skoring tersebut, metode maserasi dengan skor ratarata 3.71 dari skala 5 adalah metode ekstraksi terbaik diikuti dengan metode destilasi vakum, headspace dan Licken Nickerson. Hasil dari uji skoring ini dapat dilihat pada Gambar 1.

Mengingat salah satu parameter penting pada maserasi adalah pelarut yang digunakan, maka dilakukan pemilihan pelarut. Empat jenis pelarut yang digunakan untuk ekstraksi andaliman dengan cara maserasi adalah dietil eter, kloroform, aseton dan etanol. Dari penelitian Wijaya et al. (1999), komponen terbanyak yang terdapat pada ekstrak andaliman adalah komponen terpen, dan menurut Suradikusumah (1989), ekstraksi terpenoid biasa dilakukan dengan menggunakan pelarut eter, kloroform dan aseton.

Keterangan:

HS = Headspace

LN = Lickens-Nickerson

Nilai skoring:

1 = tidak mirip/menyimpang

2 = kurang mirip

3 = agak mirip

Panelis: 12 orang panelis semi terlatih

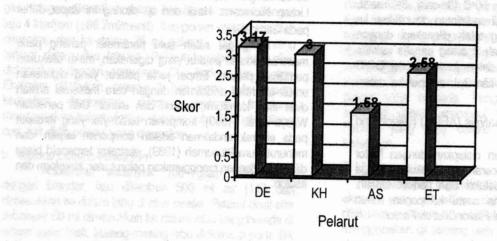
Volume tiap ekstrak sama, 8 ml dalam botol 15 ml

Solven yang digunakan : dietil eter

Gambar 1. Hasil uji skoring metode ekstraksi

Ekstraksi MS = Maserasi

MS = Maserasi DV = Destilasi Vakum


4 = mirip 5 = mirip sekali

Pemilihan pelarut yang mempunyai intensitas kuat dilakukan dengan menggunakan uji skoring secara organoleptik oleh panelis semi terlatih. Intensitas paling kuat artinya selain kuat dan tahan lama aromanya, juga menyerupai andaliman segar yang digunakan sebagai pembanding dalam uji skoring ini. Dietil eter mendapat skor rata-rata tertinggi yaitu 3.17 dari skala 4. Hasil uji skoring terhadap pelarut ini dapat dilihat pada Gambar 2.

The state of the s

2. Analisa Komponen Flavor

Identifikasi komponen volatil dilakukan dengan mencocokkan spektrum massa dari komponen target dengan spektrum massa referensi GC-MS. Setelah itu, nilai LRI komponen target dibandingkan dengan nilai LRI referensi. Hasil identifikasi terhadap komponen volatil andaliman hasil ekstrak maserasi dapat dilihat pada Tabel 1, sedangkan hasil ekstrak destilasi vakum dapat dilihat pada Tabel 2

Keterangan : DE = Dietil Eter

AS = Aseton

KH = Kloroform

ET = Etanol

Panelis : 12 orang panelis semi terlatih Volume tiap pelarut sama, yaitu 8 ml dalam botol 15 ml

Gambar 2. Hasil uji skoring pelarut dari esktrak andaliman

Tabel 1. Komponen volatil dari ekstrak flavor buah andaliman dengan metode maserasi menggunakan dietil eter

No.	Nama komponen	LRI eksperimen	LRI referensia	Luas Area Relatif (%)
1.	α - pinene	927	939	0,70
2.	β - myrcene	988	991	2,00
3.	Limonene	1028	1021	15,80
4.	[Z] β Ocimene	1036	1040	0,39
5.	[E] B Ocimene	1046	1050	0,86
6.	Linalool	1102	1098	0,76
7.	Citronellal	1147	1153	5,63
8.	α - terpineol	1195	1189	0,20
9.	β - citronellol	1234	1228	0,84
10.	Neral	1243	1240	0,22
11.	Linalool acetate	1253	1257	0,32
12.	Geraniol	1260	1255	3,34
13.	Geranial	1272	1270	
14.	Citronellyl acetate	1351	1354	2,57 0,24
15.	Geranyl acetate	1386	1383	32,04

16.	[Z]β-famesene	1421	1443	0,51
17.	A seskuiterpene	1500		0,13
18.	Cubebol	1530	1514	0,19
19.	[Z] Isoelemicin	1575	1573	0,36
20.	A branch alkane	1594		0,21
21.	[Z] Asarone	1627	1622	9,48
22.	[E] Asarone	1685	1679	5,86
23.	A branch alkane	1792		0,13
24.	A terpenyl ester	1839		0,19
25 .	Unknown	1938		0,53
26.	Unknown	1966		0,53
27.	Unknown	2063		0,22
28.	Unknown	2184		8,67
29.	Unknown	2194		0,88
3 0.	Unknown	> 2200		6,20

Keterangan: LRI eksperimen dari GC-MS kolom DB-5

* LRI referensi Adams (1995), kolom DB-5

Tabel 2. Komponen volatil dari ekstrak flavor buah andaliman dengan metode destilasi vakum

No.	Nama komponen	LRI eksperimen	LRI referensi a	Luas Area Relatif (%)
1.	β- myrcene	986	991	7,06
2.	Limonene	1022	1021	5,17
3.	[Z]β-ocimene	1033	1040	0,88
4.	$[E]\beta$ - ocimene	1044	1050	1,54
5.	Linalool	1098	1098	6,61
6.	Citronellal	1150	1153	16,96
7.	α - terpineol	1191	1189	0,88
8.	β - citronellol	1229	1228	2,76
9.	Neral	1239	1240	4,55
10.	Geraniol	1256	1255	13,52
11.	Geranial	1269	1270	10,13
12.	Geranyl acetate	1380	1383	29,91

Keterangan: LRI eksperimen dari GC-MS kolom DB-5

^a LRI referensi Adams (1995), kolom DB-5

Dari ekstrak maserasi denan dietil eter dapat diidentifikasi 24 komponen volatil dan 6 komponen yang tidak dapat diidentifikasi (Tabel 1). Komponen monoterpen teroksigenasi merupakan komponen terbanyak (46,54%). Kelompok monoterpen hidrokarbon merupakan komponen terbanyak kedua (19,75%). Sisanya adalah komponen aromatik (15,7%), komponen alifatikhidrokarbon (0,34%), komponen seskuiterpen hidrokarbon (0,64%), dan 6 komponen yang tidak teridentifikasi (17,03%). Dari 46,54% komponen monoterpen teroksigenasi dapat dibagi lagi menjadi kelompok monoterpen alkohol (5,33%), monoterpen aldehida (8,42%) dan monoterpen ester (32,79%). Senyawa yang termasuk dalam kelompok-kelompok di atas dapat dilihat pitida Tabel 3.

Dari ekstrak andaliman dengan metode destilasi vakum, dapat diidentifikasi sebanyak 12 komponen yang seluruhnya termasuk pada 24 komponen volatil pada ekstrak maserasi (Tabel 2). Senyawa yang teridentifikasi pada ekstrak hasil destilasi vakum termasuk delam golongan monoterpen hidrokarbon dan monoterpen teroksigenasi.

Seperti terlihat pada Tabel 3, ada dua komponen utama pada flavor andaliman dengan luas area relatif lebih dari 10%. Geranyi acetate merupakan senyawa terbanyak pada ekstrak dengan luas area relatif 32,04%. Limonene merupakan senyawa kedua terbanyak dengan luas area relatif 15,80%.

Tabel 3. Penggolongan komponen volatil andaliman dari ekstrak maserasi dengan pelarut dietil eter

LRI eksperimen	Nama komponen	Luas area relatif (%)
	Monoterpen hidrokarbon (19,57 %)	
927	α - pinene	0,70
988	β - myrcene	2,00
1028	Limonene	15,80
1036	[Z] β- ocimene	0,39
1046	[E] β- ocimene	0,86
	Monoterpen alkohol (5,28%)	
1102	Linalool	0,76
1195	α - terpineol	0,20
1234	β - citronellol	0,84
1260	Geraniol	3,34
1530	Cubebol	0,19
	Monoterpen aldehida (8,35%)	
1147	Citronellal	5,63
1243	Neral	0,22
1272	Geranial	2,57
	Monoterpen ester (32,49%)	
1253	Linalool acetate	0,32
1351	Citronellyl acetate	0,24
1386	Geranyl acetate	32,04
1839	Terpenyl ester	0,19
	Aromatik (15,56%)	
1575	[Z] Isoelemicin	0,36
1627	[Z] Asarone	9,48
1685	[E] Asarone	5,86
	Alifatik Hidrokarbon (0,34%)	
1594	A branch alkane	0,21
1792	A branch aikane	0,13
	Seskuiterpen hidrokarbon (0,64%)	
1421	[Z] β-famesene	0,51
1500 Catatan :	A seskuiterpene	0,13

Terdapat 6 komponen yang tidak teridentifikasi dengan luas area relatif 17,03%

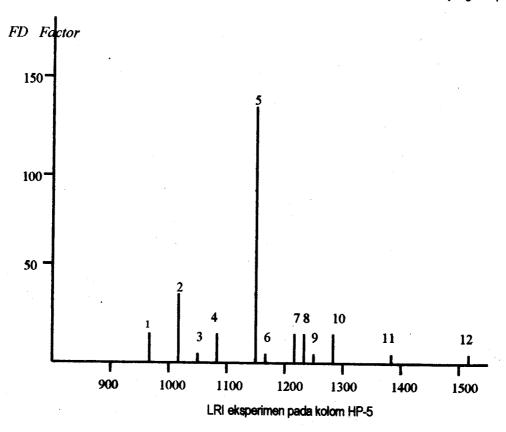
Limonene temyata juga merupakan komponen utama pada tanaman-tanaman lain yang satu marga dengan andaliman, yaitu marga Zanthoxylum. Wu et al. (1996) melaporkan bahwa limonene adalah komponen utama (23 %) dari lada Jepang (Zanthoxylum piperitum DC) yang lebih dikenal dengan sansho. Penelitian yang sama terhadap sansho oleh Kim et al. (1989) juga menyebutkan bahwa limonene (11,91%) merupakan komponen utama minyak atsiri yang diperoleh dari kulit dan daun Zanthoxylum piperitum DC. Limonene juga ditemukan pada buah Zanthoxylum simulans (> 10%), hal ini didasarkan pada penelitian Chyau et al. (1996). Buah Zanthoxylum bungeanum Maxim menurut Tirillini et al. (1994) juga mengandung limonene (20,47%) sebagai

komponen utamanya. Buah Citrus japonica L dari Vietnam dari suku yang sama dari andaliman, suku Rutaceae, menurut Nguyen et al. (1996) juga mengandung limonene sebagai komponen terbanyak (88,4%) pada minyak atsiri hasil ekstrak dari kulit buahnya.

4. Analisa Komponen Kunci Aroma

Dari 24 komponen yang berhasil diidentifikasi hendak diketahui komponen yang merupakan komponen kunci aroma atau sering disebut potent odorant atau character impact compound. Komponen kunci aroma tersebut dapat diketahui dengan menggunakan alat GC-O (Gas Chromatography Olfactometry).

Komponen hasil analisa dengan GC-O dicocokkan LRInya dengan LRI yang didapat dari GC-MS dan LRI referensi. Selain itu, untuk memastikan kromatogram hasil GC juga dicocokkan dengan kromatogram GC-MS. Analisa deskripsi aroma menggunakan GC-O dilakukan oleh dua orang panelis terlatih.


Hasil analisa GC-O menunjukkan bahwa yang paling dominan adalah aroma sitrus (Tabel 4). Andaliman mempunyai aroma sitrus yang segar dan kuat. Untuk mengetahui komponen aroma yang berperan pada andaliman, dilakukan analisa lebih lanjut dengan metode Aroma Extract Dilution Analysis (AEDA) menggunakan alat GC-O. Menurut Acree (1993), dengan menggunakan cara pengenceran seperti metode AEDA, bisa dihasilkan estimasi kualitatif terhadap komponen yang berpotensi terhadap aroma bahan yang dielusi dengan GC.

Sampel maserasi yang akan dianalisa dengan metode AEDA sebelumnya diencerkan menggunakan pelarut awalnya dengan faktor pengenceran 2 kali atau 2°, di mana n = 1, 2, 3, ... hingga pengenceran tertinggi sewaktu tidak tercium bau lagi dari sniffing port. Senyawa yang dinyatakan sebagai komponen kunci aroma (potent

odorant) adalah senyawa dengan Flavor Dilution Factor yang besar karena berarti memiliki intensitas bau yang tinggi.

Flavor dilution chromatogram dari ekstrak maserasi andaliman (Gambar 3) menunjukkan 12 komponen yang terdeteksi dengan FD factor berkisar antara 4-128. Komponen dengan FD factor tertinggi adalah citronellal yang didekskripsikan beraroma sitrus yang kuat dan hangat dengan intensitas yang besar. Limonene adalah komponen dengan FD factor tertinggi kedua, yaitu 32 yang beraroma kulit jeruk yang manis. Kesepuluh komponen lainnya juga memberikan kontribusi besar terhadap aroma andaliman dengan FD factor antara 4-8. Komponen kunci aroma dari andaliman didominasi oleh golongan monoterpen.

Berdasarkan penelitian Kojima et al. (1997) yang meneliti potent odorant dari sansho dengan menggunakan metode AEDA, citronellal dan citronellal adalah komponen yang memberikan karakter dari aroma sansho, ditambah [Z] 3 hexenol yang memberikan karakter green. Citronellal juga merupakan komponen kunci aroma terpenting pada andaliman. Hal ini menunjukkan bahwa andaliman mempunyai karakter aroma yang mirip dengan sansho.

Gambar 3. Grafik AEDA ekstrak maserasi flavor andaliman

Tabai	4 Hagil	analicie	AFDA d

No	LRI (eks)ª	LRI (eks)b	LRI (ref)c	Nama komponen	FD factor	Deskripsi aroma
1.	985	988	991	β-myrcene	8	Sitrus, manis, matang
2.	1029	1028	1021	Limonene	32	Kulit jeruk, manis
3.	1046	1036	1040	[Z] β-ocimene	4	Sitrus, manis, matang
4.	1097	1102	1098	Linalool	8	Sitrus, floral
5.	1152	1147	1153	Citronellal	128	Sitrus, kuat, hangat
6.	1167			Unknown	4	Green
7.	1212	1234	1228	β-citronellol	8	Sitrus, hangat
8.	1227	1243	1240	Neral	8	Lemon, manis
9.	1256	1260	1255	Geraniol	4	Floral, daun jeruk
10.	1274	1272	1270	Geranial	8	Lemon, manis
11.	1390	1386	1383	Geranyl acetate	4	Sitrus, floral, asam
12.	1508	1500		A seskuiterpene	4	Woody

Keterangan : a LRI hasil eksperimen dengan GC/O, kolom HP-5

- ^b LRI hasil eksperimen dengan GC-MS, kolom DB-5
- ^cLRI referensi Adams (1995), kolom DB-5
- d Hanya komponen dengan FD factor ≥ 4 Unknown: tidak terdeteksi pada GC-MS, tapi terdeteksi pada GC/O Diuli oleh 2 panelis terlatih

KESIMPULAN

Pada ekstrak maserasi andaliman dengan pelarut dietil eter, terdeteksi sebanyak 24 komponen volatil dengan mayoritas terdiri dari monoterpen teroksigenasi (46,54%). Kelompok monoterpen hidrokarbon yang terdiri dari 5 senyawa merupakan komponen terbanyak kedua, yaitu sebanyak 19,75%. Sisanya adalah komponen komponen aromatik (15,70%), hidrokarbon (0,34%), komponen seskuiterpen hidrokarbon (0,64%), dan 6 komponen yang tidak teridentifikasi (17,03%).

Komponen utama yang mempunyai luas area relatif tinggi (>10%) pada ekstrak andaliman diantaranya adalah geranyl acetate (32,04%) dan limonene (15,80%). Limonene merupakan komponen yang menyamakan andaliman dengan tanaman-tanaman lain yang satu marga.

Aroma Extract Dilution Analysis terhadap ekstrak maserasi dari buah andaliman menunjukkan bahwa citronellal adalah komponen kunci aroma andaliman yang intensitas aromanya paling tinggi (FD factor 128). Citronellal memberikan aroma sitrus, kuat, hangat. Limonene yang juga salah satu komponen kunci aroma andaliman (FD factor 32) memberikan aroma kulit jeruk dan manis. Komponen lainnya pemberi aroma pada andaliman meliputi β-myrcene, [Z] β-ocimene, linalool, β-citronellol, neral, geraniol, geranial, geranyl acetate, unknown dan a sequiterpene.

UCAPAN TERIMA KASIH

Penèlitian ini didanai oleh *Project grant* QUE-FTSP, IPB tahuan anggaran 2000

DAFTAR PUSTAKA

- Amerine, M.A., Pangborn, R.M., dan E.B. Roessler. 1965. Principles of Sensory Evaluation of Food. Academic Press, London.
- Adams, R.P. 1995. Identification of Essential Oil Components by GC/MS. Allured Publishing Corp., Illinois.
- Acree, T.E. 1993. Gas Chromatography-Olfactometry. Didalam Flavor Measurement. C.T. Ho & C.H. Manley (Ed.). Marcel Dekker. Inc. New York, Basel, Hong Kong.
- Chyau, C.C., J.L. Mau, dan C.M. Wu. 1996.
 Characteristics of the stem distilled oil and carbon dioxide extract of Zanthoxylum simulans Fruit. J. Agric. Food Chem. 44 (4): 1096-1099.
- Kim, J.H., K.S. Lee, W.T. Oh, dan R.R. Kim. 1989.
 Flavour components of the peel and leaf oil from ripe Zanthoxylum piperitum DC fruit. Korean J. Food Sci. and Technol. 21 (4): 562-568.

- Kumara, B. 1998. Identifikasi Character Impact Compound Flavor Buah Kawista (*Feronia limonia*). Skripsi Fakultas Teknologi Pertanian, IPB. Bogor.
- Kojima, H., Kato, a., Kubota K., dan A. Kobayashi. 1997.

 Aroma compound in the leaves of Japanese pepper (Zanthoxylum piperitum DC) and their formation from glycosides. J. Biosci., Biotechnol. And Biochem. 61 (3): 491-494.
- Nguyen, M.P., V.N. Lo, X.D. Nguyen, dan P.A. Leclercq. 1996. Constituents of the fruit peel oil of *Sitrus japonica* L from Vietnam. J. Essent. Oil Res. 8 (4): 415-416.
- Priser, C., Etievant, P.X. dan S. Nicklaus. 1999.

 Production of Representative Champagne Extracts for Olfactory Analysis. <u>Di dalam</u> Flavour Science: Recent Developments. A.S. Taylor. Dan D.S. Motrram (Ed).

- Suradikusumah, E. 1969. Kimia Tumbuhan. Depdikbud. Dikti. PAU. IPB, Bogor.
- **Tirillini, B. dan A. M. Stoppini. 1994.** Volatile constituents of the fruit secretory glands of *Zanthoxylum bungeanum* Maxim. J. Essent.Oil Res. 6 (3): 249-252.
- Ulirich, F. dan W. Grosch. 1987. Identification of the most intense odor compounds formed during autooxidation of linoleic acid. Z Lebensm. Unters, Forsch. 184 (4): 277-282.
- Wijaya, C.H., H.N. Lioe, E.H. Purnomo, B.Widiastuti, dan I. Siswadi. 1999. Komponen Volatil dan Aktivitas Fisiologis Aktif Andaliman (Zanthoxylum acanthopodium DC.) Rempah Tradisional Sumatera Utara. Laporan penelitian project grant perguruan tinggi (belum dipublikasi).
- Wu, Y., M. Shimoda, dan Y. Osajima. 1996. Volatile aroma compounds in young leaves and green fruits of Japanese pepper. Nippon Nogeikagaku Kaishi. 70 (9): 1001-1005.