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Abstract 
The momentum flux density of electromagnetic radiation in dielectric media (Abraham-Minkowski problem) has 
not yet been solved while this question seems to be settled for collisionless fully ionized plasma. Therefore, the 
experiments of Ashkin are analyzed for a numerical evaluation of the total momentum transferred by laser beam 
to the sphere suspended in a fluid using four competing formulas for volume momentum, given by Abraham, 
Minkowski, Peierls, and Klima-Petrzilka. It turns out that at least for this condition of high frequency radiation 
the Minkowski’s formula as predicted by Gordon arrives at the best fit with experiments and no term of 
Claussius-Mosotti media are involved at this process of radiation forces. 

Keywords: radiation forces, dielectric, laser. 

Abstrak 
Ekspresi rapat fluks momentum gelombang elektromagnetik untuk medium plasma yang terionisasi sempurna 
telah mencapai bentuk final yang eksak, namun tidak untuk medium dielektrik. Oleh karena itu, eksperimen 
Ashkin akan dianalisis dalam kerangka evaluasi numerik untuk menghitung total momentum yang ditransfer 
oleh berkas laser kepada sebuah bola dielektrik yang terendam di dalam suatu fluida dengan menggunakan 
empat ekspresi volum momentum yang dikemukakan oleh Abraham, Minkowski, Peierls, dan Klima-Petrzilka. 
Hasilnya menunjukkan bahwa formula Minkowski - sebagaimana yang telah diprediksikan oleh Gordon untuk 
radiasi frekuensi  tinggi – yang paling cocok dengan eksperimen Ashkin dan tidak ada suku Claussius-Mosotti 
yang terlibat dalam proses tersebut.  

Kata kunci: gaya radiasi, dielektrik, laser. 
 

1. Introduction 
The Abraham-Minkowski problem of the 

correct form of momentum of light in a refractive 
media has not been solved yet. In connection with 
this problem, many articles have been written, for 
instance by Klima and Petrzilka1) and by Peielrs2), 
both in 1975 which have the same models except 
the correction factor, σ, which was equal to 1/3 for 
the former and 1/5 for the latter. 

The discussion of the Abraham-Minkowski 
problem may arrived at a solution at least for 
collisionless plasma3,4) based on the fact that the 
final formula of the nonlinear force (generally 
containing ponderomotive and nonponderomotive 
terms) could be proved from the momentum 
conservation of laser-plasma interaction3) for non-
transient condition while the transient case after 
several disputes was arriving at a formulation5) 
which was proved to be Lorentz and gauge 
invariant6). However, the problem seems to be still 
open for the case of dielectric or media that not 
fully ionized. The following detailed numerical 

calculation of the forces of the laser radiation to 
uniform dielectric sphere embedded in 
homogeneous fluids permits a clear distinction 
between the different models. The comparison of 
these results with measured velocities in the 
experiments by Ashkin7) permits a clear decision 
about the suitable theoretical model. This may 
provide another access to the solution for the 
Abraham-Minkowski problem for dielectric 
materials.  

2. Method of Calculation 
First we are summarizing different formulas 

for the volume momentum of the electromagnetic 
wave in media: 
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of Peierls, and 
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of Klima-Petrzilka. n is the optical refractive index, 
the square is the dielectric constant for non-
dissipative media. A further proof of the validity of 
the result for plasma is that the increase of the 
momentum of a photon changing from a 
homogeneous medium into another  one needs a 
compensation just given by the reflectivity of 
Fresnel formula8), if no cohesive forces are assumed 
in fully ionized plasma for the limited9) plane 
interfaces the extension of this double layer plasma 
model to the degenerate electrons of a metal 
immediately reproduced the experimental value in 
metal or nuclei10). 

We are using this momentum for calculating 
the force exchange at the interface of  dielectric 
sphere of refractive index n2 and radius ro, 
suspended in medium of refractive index n1 under 
irradiation by a laser beam with wavelength λ, 
radius of beam wo and power P, as illustrated in 
Figure 1. Suppose that the incident wave comes 
from z-positive to z-negative. The field equations 
can be written as: 
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whereas γ = wo
-2

We exclude here the longitudinal 
components of laser beam11) since they do not 
contribute the Poynting terms as shown from the 
temporal phase shift12). 

Energy flux of the electromagnetic wave 
defined as: 

 1 BES ⊗
μ

=
o

 (6) 

and the momentum flux, or the momentum density 
times the velocity of light in medium can be written 
as: 
 

f  = C S  (7) 
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Figure 1. A ray of rate energy dE1

i hits the top 
surface of the dielectric sphere at an angle θ1 and an 
infinitesimal area dA. The sphere has index of 
refraction n2, and the surround fluid has index of 
refraction n1. The ray is shown partially refracted 
and reflected at the lower and the upper surfaces. 
where  

 
Petrzilka-Klimafor   )1(

3
11

2
1

Peierlsfor   )1(
5
11

2
1

Abrahamfor                                    1

Minkowskifor                                      

22

22

⎥
⎦

⎤
⎢
⎣

⎡ −
−+=

⎥
⎦

⎤
⎢
⎣

⎡ −
−+=

=

=

n
nn

nc

n
nn

nc

nc

c
nC

 
 
For incident wave defined in Eq. (5), the energy 
flux can be written as: 
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and its average over a cycle is: 
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The relation between the total power of the beam 
and intensity of the electric field can be determined 
by integrating the average of energy flux over the 
cross section of the beam, 
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Now, consider a single ray of rate energy 
dE1

i hitting a dielectric sphere at an infinitesimal 
area dA of the top surface with an angle of 
incidence θ1 as seen in Figure 1. The total force on 
the sphere is the sum of contributions due to the 
reflected ray and the infinite number of emergent 
refracted rays of successively decreasing energy is 
determined by the Fresnel reflectance and 
transmittance. 

By integrating over all beamlet, one arrives 
at the net force F transferred to the sphere for each 
of four cases indicated by indices M for 
Minkowski, A for Abraham, P for Peierls and KP 
for Klima-Pertzilka. The infinitesimal area dA in 
spherical coordinate is: 

φθθ= ddrdA o   sin2  (12) 

Since there is no dependency on φ, Eq. (12) above 
can be simplified by integrating it over angle φ to 
find: 

  sin 2' 2 θθπ= drdA o  (13) 

Since x2 + y2 = ro
2 sin θ  the average of energy flux 

can be written as: 
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The rate energy which reaches the infinitesimal 
area dA′ is 

 cos'11 θ= dASdE ii  (15) 
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Following Eq. (7), the rate momentum which 
comes to the area dA′ in z-axis can be written as: 

i
z
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The minus sign shows that this momentum is 
directed to z-negative. 

The fraction of reflected and transmitted 
waves can be determined by using Fresnel formulas 
in which two cases should be considered. In the 
first case, the electric field is perpendicular to the 
plane of incidence and the second case, the electric 
field is in that plane. The Fresnel formulas for the 
two cases are given below for a light comes from 
medium of refractive index n1 to the other of 
refractive index n2 with θ and θ′ for an incidence 
and refractive angle. 
1. The electric field at the right angle to the plane 

of incidence 
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2. The electric field is in the plane of incidence 

'coscos
'coscos

  ;  

'coscos
cos2

  ;  

12

12
22

12

2
22

θ+θ
θ−θ

==

θ+θ
θ

==

nn
nn

RRHH

nn
n

TTHH

ir

it

(19) 

The rate of energy associated with 
transmitted and refracted waves, the angle of their 
propagation relative to the z-axis and the rate 
momentum in the z-direction due to waves are 
listed below. For the first penetration, those 
quantities are: 
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For further reflection (indicated by m > 1), those 
quantities are: 
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Table 1. The experimental and calculated radiation forces based on Ashkin experiments7). 

 
Quantities Experiment 1 Experiment 2 Experiment 3 
Refractive index of the surround fluid, n1 1.33 1.33 1.33 
Refractive index of the sphere, n2 1.58 1.58 1.58 
Sphere radius, ro (μm) 1.34 1.20 1.34 
Spot size of laser beam, wo (μm) 6.20 7.50 6.20 
Wavelength of laser beam, λ (μm) 0.5154 0.5154 0.5154 
Power of laser beam, P (mW) 19 10 128 
Comparison of resulted forces:    
Fex (pN)*) 0.6567 0.2360 5.560 
FAshkin  (pN) 0.7337 0.2290 4.940 
FM (pN) 0.7380 0.2160 4.971 
FA (pN) 0.4169 0.1221 2.810 
FP (pN) 0.5530 0.1620 3.723 
FKP (pN) 0.5360 0.1570 3.612 

 
 *) Fex was calculated based on the Stoke’s formula in Eq. (24) 
 
For the path of light coming to dA′, the change of 
the rate of momentum gives the force on the sphere. 
In the z-direction this force is: 
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The total force on the sphere can be found by 
integrating dfz over the top surface of the sphere (or 
from θ = 0 to θ = π/2) 

These calculations are compared with the 
Ashkin’s experiments, in which the maximum 
velocities of the dielectric spheres under irradiation 
of TEM00 laser beam were measured. By using 
Stoke’s formula,  

vrFStoke    6 ηπ=  (24) 

the experimental radiation forces can be found. 
Ashkin himself was using his own empirical 
formula to find those velocities7). The formula is: 

3
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24
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where q is the fraction of light effectively reflected  
back.  In  this  experiment he found q = 0.062. 

3. Result and Discussion 
From Table 1., for experiment 1 – 3 it is 

clear that Minkowski’s momentum relation gives 
the closest result to the experiment (the force is 
calculated using Stoke’s formula). For all 
experiments, the Peierls and Klima-Petrzilka 
models give almost the same results as we 
predicted above and differ strongly in comparison 
to the experiment. These results are of a good 
agreement with Minkowski’s as predicted by 

Gordon13) and supports the view derived by 
Novak14). For very high frequencies (e.g. optical 
frequencies) the corresponding forces are in 
accordance with the Minkowski’s while 
experiments for low frequencies15) agree with 
Abraham.  
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