Show simple item record

dc.contributor.advisorJayanegara, Anuraga
dc.contributor.advisorLaconi, Erika Budiarti
dc.contributor.advisorKumalasari, Nur Rochmah
dc.contributor.advisorSofyan, Ahmad
dc.contributor.authorAnggraeni, Ayu Septi
dc.date.accessioned2023-07-28T03:25:46Z
dc.date.available2023-07-28T03:25:46Z
dc.date.issued2023-07-25
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/122750
dc.description.abstractRuminant livestock methane emissions contribute significantly to agriculture's massive environmental burden. Current animal nutrition research has focused on its ability to modify rumen fermentation in order to reduce methane emissions. Chitosan is a linear polysaccharide made up of two repeating units, Dglucosamine and N-acetyl-D-glucosamine, joined together by β-(1→4)-linkages made up of N-acetylglucosamine (GlcNAc) units. On the other hands, silage is a type of fodder preservation technology. Non-optimal ensilage can lower DM content and cause mold to emerge on silage produced. Chitosan added to silage reduced methane generation, improved nutritional and fermentative quality, and reduced yeast and mold on silage product. Pre-research examined the influence of commercial chitosan and crab shells, a source of chitin, on in vitro rumen fermentation properties. RJ4 (treatment with 1% commercial chitosan) reduces gas production, while RJ2-RJ3 (20-30% swimming crabs shell of DM) also reduces gas production and in vitro organic matter digestibility. Despite the fact that crab shells can reduce gas production, they are less effective than commercial chitosan. This implies that the crab shells should be further processed into chitosan to increase their value and efficacy as rumen modifiers. The first stage focuses on how to obtain the best chitosan product from various methods and sources. Crab shells and wooden grasshoppers were used as chitosan source species, while conventional and green chemistry extraction methods were used as chitosan extraction variations. Green chemistry extraction using crab shells as a source of chitosan produces more chitosan with higher yield, DD, and solubility. The Gram-positive bacteria Clostridium acetobutylicum and the Gram-negative bacteria Escherichia coli were used to evaluate this. At a concentration of 2,000 ppm, the green chemistry extraction method (M2) using crab shell (P1) as the source considerably decreased the growth of Clostridium acetobutylicum (P<0.05). The second stage, chitosan which is gets from the first stage was applied on TMR silage and evaluated this physical, chemical and microbiological quality, in vitro rumen fermentation characteristics and in sacco degradability. The level of chitosan consists of SA (TMR silage with distilled water control, 0% chitosan), SB (TMR silage with 1% acetic acid control, 0% chitosan), SC (TMR silage with 0.5% chitosan in 1% acetic acid), SD (TMR silage with 1% chitosan in 1% acetic acid) and SE (TMR silage with 1.5% chitosan in 1% acetic acid). Chitosan at a dosage of 1–1.5% (SD and SE treatments) improves the nutritional (lowering ether extract, increasing protein content, tends reducing weight loss and maintain the optimal pH for ensilage) and microbiological properties (increase LAB count as well as tend to reduce Clostridium population) of TMR silage without impairing its physical state. The addition of 1-1.5% chitosan (SD and SE treatments) has been shown to decrease total gas production, total protozoa, average methane production, acetateproportion and the acetate/propionate ratio, increasing propionate proportion. The degradation of dry matter was reduced by the inclusion of chitosan (SE treatment) whereas the degradation of organic matter and crude protein was enhanced which is evaluated by in sacco analysis The third stage discusses the metabolome profile in silage and rumen fluid samples, as well as microbiome dynamics in rumen fluid and the correlation between the metabolome and microbiome in rumen fluid. This study found 308 metabolites, including 227 significant different compounds detected from silage samples. A total of 144 metabolites with variable important of projections (VIP) scores > 1 can be used as differentiating metabolites. L-Valine has the greatest significant difference VIP value of potential metabolite marker, and the area of this metabolite increases significantly as the level of chitosan supplementation increases. While, in the rumen fluid sample, 33 metabolites were discovered, with 20 significant different metabolites observed. A total of 13 metabolites with VIP scores > 1 can be used as metabolite markers. The potential metabolite marker 1- Methyl-1,2,3,4-tetrahydro-Î2-carboline-3-carboxylic acid (MTCA), a harmala alkaloid, has the highest significant difference VIP value. As the amount of chitosan added increased, this metabolite decreased (SD ad SE treatments). Proteobacteria, Bacteroidota, and Firmicutes were the most abundant of the 10 phyla found. Nevertheless, treatments with varying chitosan concentration had no effect on the relative abundances of these three phyla. To a greater extent than other factors, the TMR silage's composition appears to determine the relative abundance of these phyla. With the addition of chitosan, the abundance of nearly every phylum and some genera of bacteria decreased. In this study, the relationship between the metabolome (amine and indoles compounds) in rumen fluid and the microbiome (Bacteroidota and Firmicutes) appears to be mostly negative. The correlation between Ruminobacter and 2,4- xylidine has a moderately strong positive correlation (r = 0.74, P<0.05). Biogenic amines can be acquired by ruminants through both dietary sources and microbial metabolites in the rumen; furthermore, biogenic amines are often produced by the decarboxylation of certain amino acids. While, negative correlations between metabolites and the rumen microbiome include 2,4-xylidine with Succiniclasticum (r = -0.66, P<0.05) and Veillonellaceae UCG-001 (r = -0.68, P<0.05), followed by 2-Oxindole with Bacteroidales BS11 gut group (r = -0.74, P<0.05) and F082 (Bacterodoita) (r = -0.66, P<0.05). Bacteroidetes became the prevalent bacterium in animals fed a high starch diet, on the other hand glucose can block indole production, which could explain why the Bacteroidota group and the indoles compound have a negative connection.id
dc.description.abstractEmisi metana asal ternak ruminansia berkontribusi secara signifikan terhadap lingkungan pertanian. Penelitian bidang nutrisi ternak khususnya ruminansia saat ini berfokus pada kemampuan memodifikasi fermentasi rumen untuk mengurangi emisi metana. Chitosan adalah polisakarida linier yang terdiri dari dua unit berulang, D-glucosamine dan N-acetyl-D-glucosamine, bergabung bersama oleh β- (1→4)-linkage yang terdiri dari unit N-acetylglucosamine (GlcNAc). Silase merupakan salah satu jenis teknologi pengawetan pakan ternak. Ensilase yang tidak optimal dapat menurunkan kandungan BK dan menyebabkan munculnya jamur pada silase yang dihasilkan. Kitosan yang ditambahkan ke dalam silase dapat mengurangi pembentukan metana, meningkatkan kualitas nutrisi dan fermentatif, serta mengurangi ragi dan jamur pada produk silase. Tahap pra-penelitian mengevaluasi pengaruh kitosan komersial dan cangkang kepiting, sumber kitin, pada sifat fermentasi rumen in vitro. RJ4 (pemberian 1% kitosan) mampu menurunkan produksi gas, sedangkan RJ2-RJ3 (pemberian cangkang rajungan 20-30%) juga mampu mengurangi produksi gas dan kecernaan bahan organik in vitro. Terlepas dari hasil bahwa cangkang rajungan dapat mengurangi produksi gas, namun kurang efektif dibandingkan kitosan komersial. Hal ini menunjukkan bahwa cangkang rajungan perlu diolah lebih lanjut menjadi kitosan untuk meningkatkan nilai dan manfaatnya sebagai rumen modifier. Penelitian tahap pertama berfokus pada bagaimana mendapatkan produk kitosan terbaik dari berbagai metode dan sumber. Cangkang rajungan dan belalang kayu digunakan sebagai spesies sumber kitosan, sedangkan metode ekstraksi kimia konvensional dan green chemistry digunakan sebagai variasi metode ekstraksi kitosan. Hasil yang didapatkan dari segi kualitas fisikokimia dan antibakteri, ekstraksi kimia hijau menggunakan cangkang rajungan sebagai sumber kitosan menghasilkan lebih banyak rendemen kitosan, derajat deasetilasi (DD), dan kelarutan yang lebih tinggi. Bakteri Gram-positif Clostridium acetobutylicum dan bakteri Gram-negatif Escherichia coli digunakan untuk mengevaluasi hal ini dengan uji hambat metode mikro dilusi. Metode ekstraksi kimia hijau (M2) menggunakan sumber cangkang rajungan (P1) pada konsentrasi 2.000 ppm secara signifikan menurunkan pertumbuhan Clostridium acetobutylicum (P<0,05). Penelitian tahap kedua, kitosan yang didapat dari tahap pertama diaplikasikan pada silase TMR dan dievaluasi kualitas fisik, kimia dan mikrobiologinya, karakteristik fermentasi rumen secara in vitro dan degradabilitas in sacco. Level penambahan kitosan terdiri 0; 0,5; 1; 1,5% dari BK. Kitosan dengan dosis 1–1,5% (perlakuan SD dan SE) mampu meningkatkan nutrisi (menurunkan kadar lemak kasar, meningkatkan kadar protein kasar, cenderung mengurangi penurunan susut bobot dan menjaga pH optimal untuk ensilase) dan sifat mikrobiologis (meningkatkan jumlah BAL, cenderung mengurangi populasi Clostridium) dari silase TMR tanpa berpengaruh pada kualitas fisiknya. Perlakuan tersebut juga mampu menurunkan produksi gas total, total protozoa, rataan produksi metana,proporsi asetat dan rasio asetat/propionat, meningkatkan proporsi propionat. Terjadi penurunan degradasi bahan kering sedangkan degradasi bahan organik dan protein kasar mengalami peningkatan dengan penambahan kitosan (perlakuan SE) yang dievaluasi dengan analisis in sacco. Penelitian tahap ketiga membahas tentang profil metabolom pada sampel silase dan cairan rumen, serta dinamika mikrobioma pada cairan rumen dan korelasi antara metabolom dan mikrobioma pada cairan rumen. Studi ini menemukan 308 metabolit, 227 metabolit signifikan berbeda pada sampel silase. 144 metabolit dengan skor variable important of projections (VIP) >1 digunakan sebagai metabolit pembeda. L-Valine memiliki nilai VIP tertinggi dan berbeda secara nyata dari metabolit pembeda, dan area metabolit ini meningkat secara signifikan seiring dengan peningkatan level suplementasi kitosan. Sampel cairan rumen ditemukan 33 metabolit, dengan 20 metabolit yang berbeda nyata. Sebanyak 13 metabolit dengan skor VIP >1 dapat digunakan sebagai metabolit penanda. Metabolit penanda potensial 1-Methyl-1,2,3,4-tetrahydro-Î2-carboline-3-carboxylic acid (MTCA), merupakan golongan senyawa alkaloid harmala, nilai VIP tertinggi. Ketika level penambahan kitosan meningkat, metabolit ini menurun (perlakuan SD dan SE). Proteobacteria, Bacteroidota, dan Firmicutes adalah yang filum dengan kelimpahan tertinggi dari 10 filum yang ditemukan. Perlakuan dengan variasi level penambahan kitosan tidak berpengaruh terhadap kelimpahan ketiga filum tersebut. Komposisi silase TMR tampaknya menjadi faktor yang menentukan kelimpahan relatif dari filum ini. Dengan penambahan kitosan, kelimpahan hampir setiap filum dan beberapa genus bakteri mengalami penurunan. Dalam studi ini, hubungan antara metabolisme (senyawa amina dan indoles) dalam cairan rumen dan mikrobioma (Bacteroidota dan Firmicutes) sebagian besar berkorelasi negatif. Korelasi antara Ruminobacter dan 2,4-xylidine memiliki korelasi positif yang cukup kuat (r = 0,74, P<0,05). Amina biogenik dapat diperoleh oleh ruminansia melalui sumber makanan dan metabolit mikroba dalam rumen; lebih lanjut, amina biogenik sering diproduksi oleh dekarboksilasi asam amino tertentu. Korelasi negatif antara metabolit dan mikrobioma rumen meliputi 2,4- xylidine dengan Succiniclasticum (r = -0.66, P<0.05) dan Veillonellaceae UCG-001 (r = -0.68, P<0.05), diikuti oleh 2-Oxindole dengan Kelompok Bacteroidales BS11 (r = -0,74, P<0,05) dan F082 (Bacterodoita) (r = -0,66, P<0,05). Bacteroidetes menjadi bakteri umum yang muncul pada hewan yang diberi pakan dengan kandungan pati tinggi, di sisi lain glukosa dapat menghambat produksi indol, hal ini mungkin dapat menjelaskan mengapa kelompok Bacteroidota dan senyawa indoles memiliki hubungan negatif.id
dc.description.sponsorshipSEARCA-DAADid
dc.language.isoenid
dc.publisherIPB (Bogor Agricultural University)id
dc.titleEvaluation of Natural Chitosan as a Silage Additive: A Metabolomic-Metagenomic Approachid
dc.typeDissertationid
dc.subject.keywordTMR silagesid
dc.subject.keywordchitosanid
dc.subject.keywordrumen modifierid
dc.subject.keywordmetabolomeid
dc.subject.keywordmetagenomeid


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record