

-PP3213- Lipid and fatty acid composition of King (study	Giant Napier (Chinese Pennisetum): preliminary 337
Mitchaothai, J., A. Lukkananukool, S. Sophon	T. Trairatapiwan, R. Lertpatarakomol &
-PP3215- Effect of enokitake mushroom extracts supple	ementation in broiler diets on meat quality 341
Chumkam, S., O. Jintasataporn & O	Iintasataporn
-PP3221- Fermentation quality of sweet potato tuber s Imura, Y., S. Mizumachi & Y. Kawama	e e
-PP3223- Effect of guinea grass and Thaphra stylo si and milk production	lages on dry matter intake, nutrition digestibility
Bureenok, S., W. Homsai, A. Lukkar Y. Kawamoto	aanukool, C. Yuangklang, K. Vasupen &
NON-RUMINANT NUTRITION/ RUMINANT NU	JTRITION / MEAT SCIENCE
-OP4001- Effect of tea leaf (<i>Camellia sinensis L.</i>) on egg quality	Japanese quail egg production performance and
Jintasataporn, O.	
-OP4003- The effect of inclusion of fermented shrimp wa	aste on blood lipid profile of broiler chicken 361
Djunaidi, I.H. & D. Hardini	
-OP4006- Effect of lysine and metabolizable energy leve	ls on productive performance of Mule ducks367
Ketaren, P.P., A.P. Sinurat, L.H. Pras	
-OP4009- Effect of phytase and organic acids on m young chickens	etabolisable energy and nutrient digestibility in
Sjofjan, O., E. Widodo & B. Sesaraha	rdian
-OP4018- Utilization of dietary calcium and phosp chicken	bhorus into the egg of jet-black breeder Kedu
Wahyuni, H.I., N. Suthama, I. Mangis	ah, Tristiarti & I. Estiningdriarti
-OP4020- The effect of Red Pepper powder and Ma yolk color in laying hens	arigold flower as a natural pigmentation on egg
Moeini, M.M., S. Sadeghi & Sh. Ghaz	i
-OP4024- Variation in nutrient composition of cassa and broiler chickens	va pulp and its effects on productivity of layer
Chauynarong, N., L.F. Romero, U. Ka	nto & P.A. Iji
-OP4026- Effect of duration of soaking sweet orange value in broiler diet	e (Citrus sinensis) fruit peel in water on its feed
Oluremi, O.I.A., E.O. Aku & K.T. Ora	yaga
-OP4029- Enrichment of organic-inorganic Se and w performances and source of antioxidant in	itamin E in quail products and its effect on the quails' eggs
Akil, S. & W.G. Piliang	
-OP4035- The effect of supplementation of DL-me performance	thionine in diet containing aflatoxin on broiler
Permana, I.G., Nahrowi & A. Lotong	
-OP4037- Performances, carcass percentage and a prebiotics from corncobs and challanged w	bdominal fat of broilers fed ration contained ith <i>E. Coli</i>
Wiryawan, K.G., W. Hermana,	Sumiati, Nuraini & A. Meryandini

-OP4037-

Performances, carcass percentage and abdominal fat of broilers fed ration contained prebiotics from corncobs and challanged with *E. Coli*

Wiryawan^{1,*}, K.G., W. Hermana¹, Sumiati¹, Nuraini¹& A. Meryandini²

¹Department of Nutrition and Feed Technology, Faculty of Animal Science, ²Department of Biology, Faculty of Science and Mathematic, Bogor Agricultural University, Bogor 16680, Indonesia

Abstract

Prebiotics are nutrients, which are not digested, and selectively improve growth and activity of beneficial microbes in the intestine. Corncobs contain hemicelluloses which are potential as prebiotic sources. The objectives of this research were to study the performance, the percentage of carcass, and abdominal fat of broilers fed a ration contained prebiotic from hydrolyzed corncobs. This research used factorial completely randomized design which consisted of two factors. The first factor consisted of three treatments: basal ration, basal ration +2.5% prebiotics, and basal ration +0.01% bambermycin, meanwhile the second factor consisted of two treatments: without E. coli infection and with E. coli infection, with five replications (10 birds/replicate). The variables observed were performances (consumption, body weight, feed conversion ratio, mortality), the percentage of carcass, and abdominal fat. The results show that the performances, the percentage of carcass, and abdominal fat of broiler fed a ration contained 2.5% prebiotics were not significantly different to that of control and antibiotic treated broilers, although broilers offered prebiotic tended to have lower values of all parameters measured except for abdominal fat and mortality. It is concluded that supplementation of prebiotics from hydrolyzed corncobs may be used in broiler diet at the level 2.5% of ration dry matter.

Keywords: broiler, prebiotic, corncobs, performance, carcass

*Corresponding author: K. G. Wiryawan E-mail address:k.wiryawan@yahoo.com

Introduction

In the last decade many developed countries have restricted the addition of antibiotics in the feed due to its negative effects such as residue in animal products as well as stimulate resistance to targetted bacteria. Therefore, some alternative additives which are safer than antibiotics need to be implemented in animal industry. One of them is the utilization of prebiotics.

Prebiotics are nutrients which are not hydrolyzed by digestive tract enzymes, but beneficial to animals by stimulating the growth or activities of certain bacteria in the intestine which finally improve the animal health (Pato 2003; Manning & Gibson 2004). Some examples of prebiotics are inulin, galactooligosaccharides, lactulose, lactosucrose, isomaltoseoligo-saccharides, trans-galactooligosaccharides, fructooligosaccharides, glucooligosaccharides, soy-oligosaccharides, and xylooligosaccharides (Tamime 2005; Roberfroid 2007).

Corncobs have the potency as source of prebiotics because it contains celluloses (40%) and hemicelluloses around 36% (Aylianawati & Susiani, 2008) that can be hydrolysed to produce glucooligosaccharides and oligoxylose using cellulolytic and xylanolytic bacteria. Previous experiment by Moura et al. (2007) showed that oligosaccharides from corncobs (xylotriose and xylotetraose) could stimulate the growth of *Bifidobacterium adolescentis* and *Lactobacillus brevis*. In addition, Alonso et al. (2003) reported that xylooligosaccharides can stimulate the growth of *Bifidobacterium* sp. Therefore, the aim of this experiment was to evaluate the use of prebiotics from corncobs on performances, carcass percentage, and abdominal fat of broiler chicken challanged with *E. coli*.

Materials and Methods

Production of prebiotics

Two loop of isolate combination of *Actinomyces* sp. KBM6 and *Streptomyces* sp. 45I-3 were grown in 2000 ml corncobs containing media in a shaker incubator for 5 days at room temperature. The bacterial culture was then inoculated into 8000 ml corncob containing media for 10 days at room temperature with aeration. The cultures were evaporated until its volume became 1 liter. Degree of polymerization (DP) of prebiotics was calculated by dividing total sugar with reduced sugar.

Animal and diet

Three hundred day old chick of Cobb CP-707 strain were reared for 35 days. In the first 14 days the chickens were fed starter diet, and the remaining days were fed with finisher diet. During starter period, chickens were subjected into six different treatments of factorial design 3 x 2 with 5 replications containing 10 chickens for each replication. The first factor was three rations containing different additives i.e., starter ration without additive, starter ration with 2.5% corncob prebiotics, and starter ration with 0.01% bambermycin antibiotics. The second factor was two treatments of *E. coli* challenge i.e., without infection of *E. coli* and with infection of *E. coli* (10⁶ cfu head⁻¹). Water was provided ad libitum. The starter diet consisted of 19% crude protein and 3050 kcal kg⁻¹ of metabolic energy, whereas finisher diet consisted of 18% crude protein and 3100 kcal kg⁻¹ metabolic energy.

Parameters and data analysis

The chicken body weight was measured in the first day and every week during the experiment, and feed consumption was measured every week. At the end of experiment, one chicken from each treatment was slaughtered using the method of Kosher to determine the carcass percentage and abdominal fat. Parameters measured were feed consumption, final body weight, feed conversion ratio, carcass percentage, and abdominal fat. Data were

subjected to analysis of variance, and significance differences were further analyzed with Duncan test (Steel & Torrie, 1993).

Results and Discussion

Production of prebiotics

Prebiotics produced had degree of polymerization (DP) of 3. Gibson (1999) reported that DP of prebiotics vary between 2 to 60 for inulin and between 2 to 20 for oligosaccharides. The prebiotics produced in this experiment is a mixture of glucooligosaccharides and xylooligosaccharides. These oligosaccharides were produced by the action of cellulolytic bacteria of *Actinomyces* sp. (KBM6) and xylanolytic bacteria of *Streptomyces* sp. (45I-3). Xylooligosaccharides as prebiotics have been reported by Alonso et al. (2003). It can stimulates the growth of *Bifidobacterium* sp. and depresses the activity of intestinal pathogen as well as improve nutrient absorption. In addition, Moura et al. (2007) reported that oligosaccharides (xylotriose and xyloyatraose) from corncobs could improve the growth of intestinal bacteria such as *Bifidobacterium adolescentis*, and *Lactobacillus brevis*.

Feed Consumption, Final Body Weight, and Feed Conversion Ratio

Feed consumption of broiler during 35 days ranged from 2328 to 2457 g head⁻¹ and there was no effect of additive inclusion (prebiotics and antibiotic), *E. coli* infection, and interaction both of them on feed consumption (Table 1). This might be due to good nutrient content of the ration and good environment during the experiment. The prebiotics and antibiotics will have better influence on consumption when the animals are offered bad quality ration or exposed to bad environment. However, feed consumption of broilers fed with prebiotics from corncobs in this experiment was higher (68 g head⁻¹ day⁻¹) compared to the results reported by Hakim (2005) who used commercial prebiotics (61 g head⁻¹ day⁻¹). This means that prebiotics from corncobs can be used as additive in broiler ration.

Similar to feed consumption, broiler body weight was also not affected by all treatments. This could be related to consumption and good quality ration. Prebiotics and antibiotics are expected to improve nutrients absorption in the intestine (Leeson & Summer, 2001), however as the rations had similar quality, the nutrients digestibility might be the same causing similar nutrient absorption and deposition as body weight. Average body weight gain of broilers fed corncobs prebiotics was similar to those reported by Hakim (2005) using commercial prebiotics (239,36 vs 238,94 g head⁻¹ week⁻¹).

Parameter	C	Fact	or 2	
	Factor 1	Without E. coli	With E. Coli	$X \pm SD$
	Control	2334 ± 101	2374 ± 194	2354 ± 28
Consumption	Prebiotics	2328 ± 134	2400 ± 180	2364 ± 51
(g head ⁻¹)	Antibiotic	2457 ± 89	2394 ± 153	2426 ± 44
	$X \pm SD$	2373 ± 107	2389 ± 176	2381 ± 41
Final body weight (g head ⁻¹)	Control	1228 ± 44	1185 ± 67	1206 ± 30
	Prebiotics	1210 ± 41	1183 ± 64	1197 ± 19
	Antibiotic	1234 ± 54	1202 ± 43	1218 ± 23
	$X \pm SD$	1224 ± 46	1190 ± 58	1207 ± 24
F 1	Control	1.90 ± 0.12	2.00 ± 0.10	1.95 ± 0.07
Feed conversion ratio	Prebiotics	1.92 ± 0.13	2.03 ± 0.05	1.98 ± 0.08
	Antibiotic	1.99 ± 0.06	1.99 ± 0.06	1.99 ± 0.00
	$X \pm SD$	1.94 ± 0.10	2.01 ± 0.07	1.97 ± 0.05

Table 1. Feed consumption, final body weight, and feed conversion ratio of broiler fed prebiotics containing ration and challenged with *E. coli* for 35 days.

Feed conversion ratio ranged from 1.90 to 2.03 and was not significantly difference amongst treatments (Table 1). This means that the addition of corncob prebiotics did not have negative effect on nutrient utilization and can be used to replace antibiotics in broiler ration.

Carcass Percentage and Abdominal Fat

The average carcass percentage ranges from 68.02% to 71.03% (Table 2) and was higher compared to those reported by Syukron (2006) and Daud et al. (2007) who obtained carcass percentage between 56.64% - 60.02% and 65.35 of live weight, respectively. All treatments did not affect carcass percentage, this means that prebiotics and antibiotics addition, as well as infection with *E. coli* did not influence carcass percentage of broilers. The percentage of abdominal fat of broilers during 35 days experiment ranged from 1.44% to 1.96% and was not affected by treatments (Table 2) and lower to that reported by Daud et al. (2007) who obtained abdominal fat percentage was 2.22% at 42 days age. It may be that broilers at five week of age are still growing, so that the nutrients are used for growth instead of for fat deposition.

	Table 2.	. Carcass percentage,	and abdominal	fat of broiler	fed prebiotics	containing ration and	l
challenged with E. coli for 35 days.		challenged with E.	coli for 35 days.				

Parameter	Factor 2			
	Factor 1	Without E. coli	With E. Coli	$X \pm SD$
	Control	71.03 ± 3.79	69.48 ± 1.86	70.26 ± 1.10
Carcass	Prebiotics	69.35 ± 2.84	68.02 ± 1.43	68.69 ± 0.94
percentage (%)	Antibiotic	70.36 ± 2.34	68.96 ± 2.88	69.66 ± 0.99
	$X \pm SD$	70.25 ± 2.99	68.82 ± 2.06	69.53 ± 1.06
	Control	1.56 ± 0.25	1.96 ± 0.48	1.76 ± 0.28
Abdominal fat	Prebiotics	1.44 ± 0.49	1.54 ± 0.19	1.49 ± 0.07
(%)	Antibiotic	1.70 ± 0.41	1.61 ± 0.33	1.66 ± 0.06
	$X \pm SD$	1.57 ± 0.38	1.70 ± 0.33	1.64 ± 0.18

Conclusion

Prebiotics from corncobs at the level 2.5% can be added into broiler ration and replace bambermycin without affecting the broiler performances, carcass percentage, and abdominal fat.

Acknowledgment

This research was funded by Directorate General of Higher Education, Ministry of National Education, Indonesia, through Competitive Grant No. 219/SP2H/PP/DP2M/V/2009.

References

- Alonso, J.L., H. Dominguez, G. Garrote, J.C. Parajo and M.J. Vasquez. 2003. Xylooligosaccharides: Properties and Production Technology. EJEAFChe 2(1): 230-232.
- Daud, M., W. G. Piliang and I. P. Kompiang. 2007. Carcass percentage and quality of broilers given a ration containing probiotics and prebiotics. Jurnal Ilmu Ternak dan Veteriner 12(3): 167-174.
- Gibson, G. R. and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: introduction the concept of prebiotics. J Nutr 125(6): 1401-12.
- Hakim, L. 2005. Evaluasi pemberian *feed additive* alami berupa campuran herbal, probiotik, dan prebiotik terhadap performans, karkas dan lemak abdominal serta HDL dan LDL daging broiler. Skripsi. Fakultas Peternakan. Institut Pertanian Bogor. Bogor.
- Leeson, S. & J. D. Summers. 2001. Nutrition of the Chicken. 4th Edition. University Books, Guelph, Ontarion, Canada.
- Moura, P., R. Barata, F. Carvalheiro, F. Girio, M. C. Loureioro-Dias and M. P. Esteves. 2007. In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. Food Science and Technology 40(6) : 963-972.
- Steel, R. G. D. and J. H. Torrie. 1993. Prinsip dan Prosedur Statistika. Suatu Pendekatan Biometrik. Edisi Kedua. Terjemahan: B. Sumantri. PT. Gramedia Pustaka Utama, Jakarta.

Roberfroid, M. 2007. Prebiotics: The Concept Revisited. J Nutr 137:830S-837S.

Tamime, A. 2005. Probiotic Dairy Products. UK: Blackwell Publishing.

J		Kongsut, C.	584
Jahani-Azizabadi, H.	265	Kumagai, H.	98
Jayawardana, V.P.	208	L	
Jin, Y.C.	261	Laconi, E.B.	459
Jintana, R.	785	Laconi, E.B.	225
Jintasataporn, O.	343, 358, 535	Landy, N.	257
Juntuck, N.	184	Le, N.Q.	698
Κ		Le, Q.A.	698
K. Fukami	145	Lee, M.C.	30261
Kaenchan, N.	602	Lengkey, W.	520
Kaewkumson, S.	485	Lertpatarakomol, R.	335, 339, 785, 831
Kaewkwan, S.	184, 188	Leu, S.Y.	30
Kaewpoo, B.	283	Lotong, A.	404
Kaewwongsa, W.	253,485, 511	Lukkananukool, A.	335, 339, 352, 606
Kajaysri, J.	685	Μ	
Kana Hau, D.	103	Machfud	54
Kanchan, N.	309	Maksimovic, N.	2
Kang Suk Seo	515	Maleki Farahani, S.	303, 306
Kankamol, C.	826	Manami Nishio	633
Kanto, U.	388	Maneelek, I.	821
Kaokaew, N.	785	Mangisah, I.	379
Kar,S.	173	Marjuki	218
Karami, M.	795	Masilp, C.	309
Karti, P.D.	235, 798	Masin, C.	602
Kartiarso	459	Masuno, T.	93, 118
Kashani, S.G.	123	McGill, D.	611
Katawatin, S.	290	McGill, D.M.	116
Kawamoto, Y.	299, 348, 352	Mekkawy, W.	739
Keawtawee, T.	145	Meriam Cabling	515
Kesorn, P.	836	Meryandini, A.	409
Kesornbua, S.	821	Mian, A.A.	628
Ketaren, P.P.	369	Mishra, S.	11
			335, 339, 606, 785, 831,
Khalili, M.	257	Mitchaothai, J.	836
Khamseekhiew, B.	112	Mizumachi, S.	299, 348
Khatibi, A.	733	Moazeni-jula, G.R.	229
Kheiri, F.	505	Moeini, M.M.	384
Khempaka, S.	331	Mohaghegh, P.	479
Khezri, A.	723, 733	Mohammadi, A.	179
Khoshoei, E.A.	479	Mohammadi, M.	85, 89
Ki Chang Nam	515	Mohammadi-heisar, M.	490
Kiran, K.P.	173	Moharrery, A.	479
Kiyanzad, D.	780, 789	Mohd Azam Khan, G.K.	622
Kongrith, V.	112	Mojtahedi, M.	265

Mohammadi, A.	179	Okamoto, K.	70
Mohammadi, M.	85, 89	Okano, M. T.	70
Mohammadi-heisar, M.	490	Okoli, I.C.	, 718
Moharrery, A.	479	Okoli1, I.C.	75
Mohd Azam Khan, G.K.	622	Okonkwo, I.F.	676
Mojtahedi, M.	265	Okonkwo, J.C.	137, 676
Molee, W.	331	Oloidi, F.F.	314
Monfared, N.	81, 419	Olorunnisomo, O.A.	207
Moradi shahrbabak, M.	780, 789	Olubamiwa, O.	500
Moradi, S.	63, 655	Oluremi, O.I.A.	392
Moraveg, H.	414	Opara, M.N.	728
Moussavi, A.H.	249	Opara, M.N.	75
Mudawamah, V.M.	748	Opatpatanakit, Y.	286
Murtaza, N.	611	Orayaga, K.T.	392
Murugayah, M.	775	Otsuka, M.	592
Myung Sub Lee	515	Owosibo, A. O.	500
Nyung Sub Lee N	515	P	500
Nadeem, S.	628	P. Songsangjinda	145
Nahrowi	404, 459	Paengkoun, P.	438, 606
Nasr, J.	505	Pakmaluek, P.	615
Navanukraw, C.	245	Panachan, K.	821
Nejati, R.	807, 814	Panandam, J.M.	157, 703, 775
Ngampongsi, W.	565	Parnlak, T.	188
Ngoukaew, N.	485	Pathomsakulwon, W.	821
Nguyen, B.T.	698	Pattarajinda, V.	286, 290
Nguyen, B.V.	698	Pavlovic, I.	474
Nguyen, N.A.	448	Peangkoum, P.	579
Nguyen, T.	429	Penjor, S.	290
Nikbin, S.	775	Permana, I.G.	319, 404
Nishida	208	Petrovic, M.M.	2
Nnabude, P.C.	137	Petrovic, P.M.	2
Nokkaew, W.	184, 188	Peymani, E.	229
Norouzi Ebdalabadi, M.	249	Pham, D.L.	698
Nosrati, M.	192	Phaowphaisal, I.	597
Nulik, J.	103	Phichitrasilp, T.	245
Nuraini	409	Phonmun, T.	606
Nurgiartiningsih	748	Piliang, W.G.	399
Nwagwu, C.	718	Pimpa, O.	112
0		Pisinov, B.	474
Obiakor,M.O.	137	Piumpol, N.	602
Odedire, J.A.	314	Plainpun, N.	826
Ogbe, F.G.	132	Pojprasart, T.	821
Ogbuewu, I.P.	728	Polviset, W.	443
Oh, J.J.	261	Pongnachai, W.	253

Pongpeng, J.	651	Saharee, A.A.	672
Ponpri, C.	584	Salaenoi, J.	127, 826
Popescu, S.	58, 637	Salehi, M.	655
Popov-Raljic, J.	474	Salundik, M.H.	235
Posuwun, P.	485	Santos, O.S.	7
Pourfalah, M.	179	Saoleng, L.	708
Prasetyo, L.H.	369	Sazili, A.Q.	524, 775
Pratitis, W.	469	Seifi, S.	179
Premalatha,R.	173	Sembiring, M.	588
Priyanto, R.	713	Senevirathne, N.D.	208
Pujaningsih, R.I.	319	Sesarahardian, B.	374
Purba, M.	369	Setiadi, Y.	798
Purbowati, E.	556	Shadnoush, F.	610
Purnomo, S.S.	54	Shadnoush, G.H	610
Purnomoadi, A.	453, 575	Shah, M.K.	98
Putra, R.A.R.S.	46	Shahneh, A.Z.	414
Q		Shamsaei, H.A.	807, 814
Qin, L.	162	Shamshirgaran, Y.	192
Qin, Y.	272	Shariffah, N.Y.	664
Qiujin, Z.	272	Shi, X.	162
R		Shinjo, T.	299
Raharjo, Y.C.	369	Shirai, M.	70
Rahayu, S.	753	Sinurat, A.P.	369
Rahimian, A.	229	Sirikunsang, A.	485
Rahman, M.R.	664	Sjofjan, O.	374
Raji, A.M.	500	Soedarmadi, M.H.H.	798
Rangubhet, K.T.	448	Soetrisno, D.	222
Rashid, R.A.	524	Solati, A.	505
Rehman, A.	628	Sommart, K.	592, 597
Retnani, Y.	240	Sonseeda, P.	651
Rianto, E.	294, 453, 556	Sophon, S.	339, 689, 694, 785
Riyanto, J.	469	Sornklien, C.	196
Rizkiani, A.	459	Sri Lestari, C.M.	453, 556, 575
Romero, L.F.	388	Sri Rahayu	633
Roni, P.	520	Stefan, R.	58
Rosnina, Y.	622, 672	Stojanovic, Z.	474
Rueangsri, W.	127	Suadsong, S.	668
Ruzic Muslic, D.	2	Subepang, S.	592
S		Sudjarwo, E.	642
Saad, M.F.	168	Suek, J.	103
Sadeghi, M.	780, 789	Sugimoto, Y.	299
Sadeghi, S.	384	Suhartanto, B.	222
Saeed, A.M.	168	Sukaryana, Y.	489
Saenjan, P.	615	Sulastri, E.	16

Sumiati	409	Uchegbu, M.C.	718
Supriyantono, A.	759	Udchachon, S.	592
Supriyatna, E.	489	Utami, H.D.	802
Suranindyah, Y.	16	Utha, A.	651
Suriyagamon, S.	309	\mathbf{V}	
Suriyawong, T.	331	Valizadah, R.	249
Suthama, N.	379	Vasupen, K.	352, 836
Suthikrai, W.	785	Vatankhah,M.	41
Sutisorn, A.	485	Vendrametto, O.	7
Sutistiyanto, B.	543	Visessanguan, W.	565
Sutrisno, C.I.	108, 294, 319, 543	Vongpralub, T.	645, 651
Suwanpanya, N.	584	Vorachinda, R.	309, 602
Suwignyo, B.	222	\mathbf{W}	
Suyadi	759	Wachirapakorn, C.	443, 570, 615
Τ		Wahid, H.	622, 672
Taherpour, N.	655	Wahyuni, H.I.	379
Tahmoorespour, M.	249	Wan Khadijah, W.E.	664
Tahmorespoor, M.	192	Wang,T.	261
Takahashi, J.	208	Warriach, H.M.	611
Talebi, M.A.	795	Warriach,H.M.	116
Tatsapong, P.	579	Wattanachant, C.	565
Te Jung Choi	515	Whep, B.	543
Techakumphu, M.	668, 785	Wibawan, I.W.T.	152
Thammacharoen, S.	429	Widodo, E.	374, 642
Thammakarn, C	685	Widyati, S.	543
Thiputen, S.	597	Widyawati, S.D.	469
Thivalai, C.	694	Wiengcharoen, J.	184, 188
Thongdee,W.	511	Wiryawan, K.G.	409
Thu, N.V.	424	Wongnen, C.	570
Tienprapaat, N.	821	Wongsuthavas, S.	836
Tohidi, R.	157, 703	Wynn, P.C.	116, 611
Tomic, Z.	2	X	
Tonpitak, W.	196	Xia, X.	438
Towhidi, A.	414	Xian-lin, X.	272
Trairatapiwan, T.	335, 339, 785, 831	Y	
Traiyakun, S.	836	Yaakub, H.	775
Tran, T.T.T.	698	Yaeram, J.	245
Tran, T.T.T.	698	Yaigate, T.	283
Tristiarti	379	Yanee, Y.	606
Tsuji, T.	118	Yap, K.C.	672
Tumwasorn, S.	744	Yimer, N.	622, 672
Tunkijjanukij, S.	826	Yindee, W.	651
\mathbf{U}		Yoda, K.	70
Uchegbu, M.C.	75	Yokoyama, S.	70

Yuangklang	615, 836
Yumi Hoshino	633
Yunianto, V.D.	489
Z	
Zahoor, A.	628
Zaker-Bostanabad, S.	229
Zaki, A.A.	739
Zhang, X.	70
Zujovic, M.	2
Zulharman, D.	459