Reprinted from the

```
Far East Journal of
```


Mathematical Sciences (FJMS)

``` Volume 96, Nuḿber 4, 2015, pp 393-408
```


BUSES DISPATCHING PRÓBEEEM IN URBAN

TRANSPORT SYSTEM

Ấril Amañ, Nurisma,
Fârida Hanum and Toni Bakhtiar

Information for Authors

and Scope: The Far East Journal of Mathematical Sciences (FJMS) is devoted to publishing il research papers and critical survey articles in the field of Pure and Applied Mathematics and lics. The FJMS is a fortnightly joumal published in three volumes annually and each volume ises of eight issues.
acting, Indexing and Reviews: Global Impact Factor : 0.835. Scopus, CrossRef DOIs ses (from January 2015), AMS Digital Mathematics Registry, ProQuest, IndexCopernicus, Host, Zentralblatt MATH, Ulrich's web, Indian Science Abstracts, SCIRUS, OCLC, Excellence rearch for Australia (ERA), AcademicKeys.
ission of Manuscripts: Authors may submit their papers for consideration in the Far Eas 1 of Mathematical Sciences (FJMS) by the following modes:
miline submission: Please visit joumal's homepage at http:/hwww.pphmj.com/joumals/jms.htm Jectronically: At the e-mail address: fims@pphmj.com or kkazad@pphmj.com
lard copies: Papers in duplicate with a letter of submission at the address of the publisher.
aper must be typed only on one side in double spacing with a generous margin all round. An s made to publish a paper duly recommended by a referee within a period of three months. One galley proofs of a paper will be sent to the author submitting the paper, unless requested ise, without the original manuscript, for corrections.
act and References: Authors are requested to provide an abstract of not more than 250 words lest Mathematics Subject Classification. Statements of Lemmas, Propositions and Theorems I be set in italics and references should be arranged in alphabetical order by the sumame of the thor.
Charges and Reprints: Authors are requested to arrange page charges of their papers @ USD per page for USA and Canada, and EUR 30.00 per page for rest of the world from their ons/research grants, if any. However, for authors in India this charge is Rs. 800.00 per page tra charges for printing colour figures. Twenty-five reprints in print version and a copy in so 1 are provided to the corresponding author ex-gratis. Additional sets of reprints may be ordered time of proof correction.
ight: It is assumed that the submitted manuscript has not been published and will not be ineously submitted or published elsewhere. By submitting a manuscript, the authors agree that pyright for their arucles is transferred to the Pushpa Publishing House, Allahabad, India, if and the paper is accepted for publication. The publisher cannot take the responsibility of any loss of cript. Therefore, authors are requested to maintain a copy at their end.

Subscription Information for 2015

ional Price for all countries except India

lectronic Subscription	$€ 905.00$	US $\$ 1195.00$
rint Subscription includes Online Access	$€ 1295.00$	US 1735.00

voonk: On seeking a liconse lor volume(s) of the Far East Journal of Mathematical Sciencess (FJMS), the faccity to domioos downioad will consinue tix the end of the next caliendar year from the last issue of the volume subscribed. For having It acility to keep the downioad of the same subscribed volume for another two caliendar years may be had on a consididerable

3 Indian Rs. (For Indian Institutions in India only) rint Subscription Only
bscription year runs from January 1, 2015 through December 31, 2015
ation: The journals published by the "Pushpa Publishing House" are solely distributed by the I Books and Journals Distributors"
zt Person: Subscription Manager, Vijaya Books and Journals Distributors, Vijaya Niwas, imfordganj. Allahabad 211002, India; sub@pphmj.com ; arun@pphmj.com

BUSES DISPATCHING PROBLEM IN URBAN TRANSPORT SYSTEM

Amril Aman, Nurisma, Farida Hanum and Toni Bakhtiar*
Department of Mathematics
Bogor Agricultural University
Jl. Raya Darmaga, Bogor 16880
Jawa Barat, Indonesia
e-mail: amril.aman@gmail.com
imanurisma@yahoo.com
faridahanum00@yahoo.com
tonibakhtiar@yahoo.com

Abstract

The complexity of transport system in urban area will significantly increase in accordance with demographic development, transport demand growth, life style change and transport policy. Inadequate transport management system implies a higher transport cost incurred by fuel wasting due to traffic jam, productivity deterioration and environment degradation. Busway as one of transport modes in Bus Rapid Transit (BRT) system is commonly adopted by local government to circumvent such kind of drawbacks, since it may reassign the use of private cars into public transport. However, in some cases, the implementation of busway system is not optimal due to poor planning. This paper develops a deterministic mathematical
Received: September 9, 2014; Accepted; December 1, 2014
2010 Mathematics Subject Classification: 90B06, 90C10.
Keywords and phrases: dispatching problem. busway, Transjakarta, integer programming.
'Corresponding author
Communicated by K. K. Azad
framework to model the operation of Transjakarta, busway transport system in the metro city of Jakarta. An integer programming is established to determine the optimum number of dispatched buses from the initial shelter under minimum operational cost. Optimum dispatching leads to a minimum waiting time and assures passengers* comfort.

1. Introduction

Urban areas are locations having a high level of accumulation and oncentration of economic activities and are complex spatial structures. hus, transportation in big cities and other developed areas has high omplexity due to the modes involved, the multitude of origins and estinations, the amount and variety of traffic including congestion and the agility of public transportation systems, and the continuous growth of urban opulation. These major challenges are experienced not only by households nd businesses, but also by the urban community at large. Therefore, ansport may become a binding constraint on both economic and social spects, along with enlarged negative impacts on health and on the nvironment. According to [7], one of the most notable urban transport roblems is the public transport inadequacy, where it mainly relates to the ver used of public transit systems. During busy hours, crowdedness creates iscomfort for passengers as the system copes with a temporary surge in emand, but in the other side, low ridership makes many services financially nsustainable.

The dispatching problem is a dynamic decision problem commonly ncountered in transport system as well as in manufacturing sites, batch obs in computing and web server farms. In this paper, we present a buses ispatching model with primary objective is to minimize the number of ispatched buses from initial shelter each time-slot. Instead of treating the zrvice demand as a given continuous function, we split the time horizon 1 discrete time-slots and determine the dispatching rate for each of these me-slots.

Existing studies on the buses dispatching problem in urban transport system are some. A critical review of recent planning methodologies and selected decision support systems for optimizing urban bus transport services is provided by [2]. In [1], the concept of timed transfer procedure used in transit systems is examined and its feasibility is evaluated using four strategies based on simple two-route case to determine the conditions under which timed transfer provides improved service levels compared to unscheduled transferring. From the perspective of bus tracking technology, it is reviewed in [4] the real-time control technology to evaluate the benefits of tracking bus locations and executing dynamic schedule control through the simulation of a generic timed transfer terminal under a range of conditions. In [8], genetic algorithm is used to optimize the bus dispatching problem, which coordinates with the arrival of the passengers and improves service level by reducing the average passenger waiting time. Similarly, it is revitalized in [5] the efficiency of the public transportation system by addressing the problem of defining a bus region dispatch and simultaneous arrival, and analyzing the differences between the line dispatching and the regional dispatching model. It attempted to find the optimal timetable for given regional buses, which enables the transfer of passengers from one route to another with a minimum waiting time. A model that minimized passengers' travel costs and vehicles' operation cost under constraints of passenger volume, time, and frequency is established in [3]. A linear and single bus route optimal dispatching model is discussed in [6]. The model considers important issues like random travel times and random dynamic demand and is solved by using transient little law.

The organization of this paper is as follows. After introductory part in the first section, we provide in Section 2 the considered deterministic dispatching model. Problem statement, assumptions, defined parameters and variables are also described in this section. In Section 3, we verify our model to the case of Transjakarta transport system. We conclude in Section 4.

2. Bus Dispatching Model

1. Problem statement and assumptions

In the present work, we consider a busway route or corridor consisting of number of shelters or bus-stops served by company which has a number of sses, each bus has certain capacity and operational cost. We aim to analyze te relationship between the number of embarked passengers and the number f dispatched buses. Particularly we attempt to determine the minimum umber of dispatched buses from initial shelter each time-slot. Information a the maximum number of passengers under minimum operational cost can so be provided. We made the following assumptions in order to simplify ie analysis: (1) the track of busway is secured from other vehicles such that iere is no obstacle during the operation of busway, (2) time for fuel supply 1d time-stop due to traffic light is ignored, (3) buses are homogeneous in apacity and move between shelters under constant speed, (4) adjourned assengers leave the line and will not be considered in the next period, (5) :quired trip time between two consecutive shelters refers to one time-slot, i) buses dispatched at the same time-slot will bound for the same shelter, (7) assengers flow is only considered in one direction, (8) head-time between uses dispatched at the same time-slot is ignored, and (9) each bus may perate more than one loop a day.

.2. Parameters and variables

To facilitate our analysis, we define following parameters and indices. Ve define by $\bar{K}(i)$ the capacity of bus departed at time-slot i (in person), by $₹$ the operational cost (in rupiah per kilometer), by $\bar{D}(i)$ the elapsed istance by bus from initial shelter in time-slot i (in kilometer) and by \bar{B} the umber of available buses in a corridor (in unit). We denote by index i the i th me-slot $(i=1,2, \ldots, M)$, by j the j th departure shelter $(j=1,2, \ldots, N-1)$ nd by k the k th destination shelter $(k=2,3, \ldots, N)$, from which we assume rat there are M time-slots and N shelters along the corridor. Note that $i=1$
refers to the first shelter where buses initially dispatched. Without loss of generality, we may assume that we have more time-slots than shelters, i.e., $M \geq N$.

We introduce the following decision variables. $K(i, j)$ denotes the total capacity of buses departed from shelter j at time-slot $i, N_{B}(i, j)$ denotes the number of buses operated at shelter j at time-slot $i, P(i, j)$ denotes the number of passengers supposed to be departed from shelter j at time-slot i, $P^{\mathrm{w}}(i, j, k)$ represents the number of lining-up passengers from shelter j to shelter k at time-slot $i, P^{\mathrm{w}}(i, j)$ represents the total number of lining-up passengers at shelter j at time-slot $i, P^{\text {on }}(i, j)$ and $P^{\text {off }}(i, j)$, respectively, denote the total number of getting-on and getting-off passengers at shelter j at time-slot $i, P^{\mathrm{a}}(i, j)$ represents the total number of adjourned passengers at shelter j at time-slot $i, P^{\mathrm{ob}}(i, j)$ denotes the total number of on-board passengers at shelter j at time-slot $i, S(i, j)$ refers to the total number of available seats at shelter j at time-slot i just before passengers get-on the bus, $S_{0}(i, j)$ refers to the total number of available seats after embarkment and disembarkment at shelter j at time-slot i, and $U(i, j)$ quantifies the utility level of bus departed from shelter j at time-slot i. In this case, the utility value is calculated by the ratio between the total number of on-board passengers and the total capacity of buses.

2.3. Programming

In this part, we formulate the bus dispatching problem as an integer programming model. The objective of the model is to minimize operational cost expended by bus company throughout the period. The operational cost can be minimized by adjusting the number of dispatched buses at initial shelter. Thus, the objective function of the problem is given by

$$
\begin{equation*}
\min z:=\bar{C} \sum_{i=1}^{M} \bar{D}(i) N_{B}(i, 1) . \tag{1}
\end{equation*}
$$

Subsequently, constraints involve in this problem mainly imposed by the transport demand between origin-destination points, infrastructure and
correspondence between one time-slot and trip time between two shelters applies.
4. The total capacity of dispatched buses each time-slot should be greater than eighty percent of the number of passengers supposed to be departed from first shelter each time-slot:

$$
\begin{equation*}
N_{B}(i, 1) \bar{K}(i) \geq 0.8 \max _{j \leq M-(i-1)} P(j, j), \quad i=1,2, \ldots, M . \tag{6}
\end{equation*}
$$

5. The total capacity of buses departed from shelter j at time-slot i is equal to the multiplication between the number of dispatched buses at first shelter and bus capacity;

$$
\begin{equation*}
K(i, j)=N_{B}(i, 1) \bar{K}(i), \quad i=1,2, \ldots, M-1, j \leq i . \tag{7}
\end{equation*}
$$

6. Constraints (8)-(15) relate to the number of getting-on passengers departed from certain shelter and time-slot.

- If the number of lining-up passengers at shelter 1 and time-slot i is greater than or equal to its capacity, then the number of getting-on passengers is the same as capacity. And if smaller, all lining-up passengers will get-on the buses. Thus, for $i=1,2, \ldots, M$,

$$
\begin{align*}
& P^{\mathrm{w}}(i, 1) \geq K(i, 1) \rightarrow P^{\mathrm{on}}(i, 1)=K(i, 1) \tag{8}\\
& P^{\mathrm{w}}(i, 1)<K(i, 1) \rightarrow P^{\mathrm{on}}(i, 1)=P^{\mathrm{w}}(i, 1) . \tag{9}
\end{align*}
$$

- The total number of available seats at shelter 1 at time-slot i just before passengers get-on the bus is equal to the capacity of the bus:

$$
\begin{equation*}
S(i, 1)=K(i, 1), \quad i=1,2, \ldots, M . \tag{10}
\end{equation*}
$$

For the next shelters, the number of available seats is affected by the total number of on-board passengers as well as that of gettingoff passengers. Thus,

$$
\begin{array}{r}
S(i, j)=K(i, j)-P^{\mathrm{ob}}(i-1, j-1)+P^{\mathrm{off}}(i, j), \\
i=2, \ldots, M, j \leq i . \tag{11}
\end{array}
$$

Amril Aman, Nurisma, Farida Hanum and Toni Bakhtiar

We also have the following conditional constraints for $i=1,2$,

$$
\ldots, M, j=1,2, \ldots, N-1, \text { and } j \leq i:
$$

$$
\begin{align*}
& S(i, j) \geq K(i, j) \rightarrow S(i, j)=K(i, j), \tag{12}\\
& S(i, j)<K(i, j) \rightarrow S(i, j)=S(i, j), \tag{13}\\
& S(i, j) \geq P^{\mathrm{w}}(i, j) \rightarrow P^{\mathrm{on}}(i, j)=P^{\mathrm{w}}(i, j), \tag{14}\\
& S(i, j)<P^{\mathrm{w}}(i, j) \rightarrow P^{\mathrm{on}}(i, j)=S(i, j) . \tag{15}
\end{align*}
$$

7. Constraints below relate to the total number of on-board passengers. At the first shelter, this number is identical to that of getting-on passengers. While for the next shelters, it may be influenced by the number of getting-off passengers. Therefore, we posses

$$
\begin{align*}
& P^{\mathrm{ob}}(i, 1)=P^{\mathrm{on}}(i, 1), \quad i=1,2, \ldots, M \tag{16}\\
& P^{\mathrm{ob}}(i, j)=P^{\mathrm{ob}}(i-1, j-1)-P^{\mathrm{off}}(i, j)+P^{\mathrm{on}}(i, 1) . \tag{17}
\end{align*}
$$

Constraint (17) should be considered for $i=2, \ldots, M, j=$ $2, \ldots, N-1$, and $j \leq i$. The following conditional constraints should also be applied:

$$
\begin{align*}
& P^{\mathrm{ob}}(i, j) \leq 0 \rightarrow P^{\mathrm{ob}}(i, j)=0, \quad j \leq i \tag{18}\\
& P^{\mathrm{ob}}(i, j)>0 \rightarrow P^{\mathrm{ob}}(i, j)=P^{\mathrm{ob}}(i, j), \quad j \leq i \tag{19}
\end{align*}
$$

8. Next we must satisfy the following constraints in order to quantify the remaining available seats after embarkment and disembarkment of passengers at certain shelter and time-slot.

- The total number of available seats after embarkment and disembarkment at shelter j at time-slot i is equal to the difference between the total number of available seats just before passengers get-on the bus and that of getting-on passengers, i.e.,

$$
\begin{equation*}
S_{0}(i, j)=S(i, j)-P^{\text {on }}(i, j), \quad j \leq i \tag{20}
\end{equation*}
$$

- The following conditional constraints must also apply:

$$
\begin{array}{ll}
S_{0}(i, j) \geq K(i, j) \rightarrow S_{0}(i, j)=K(i, j), & j \leq i \\
S_{0}(i, j)<K(i, j) \rightarrow S_{0}(i, j)=S_{0}(i, j), & j \leq i \tag{22}
\end{array}
$$

9. The total number of adjourned passengers at shelter j and time-slot i is equal to the difference between the total number of lining-up passengers and that of getting-on passengers:

$$
\begin{equation*}
P^{\mathrm{a}}(i, j)=P^{\mathrm{w}}(i, j)-P^{\mathrm{on}}(i, j), \quad j \leq i \tag{23}
\end{equation*}
$$

10. We need the following constraints to assure the trip continuity of each bus:

$$
\begin{align*}
& N_{B}(1,1)=N_{B}(i, i), \quad i=2, \ldots, N \tag{24}\\
& N_{B}(i, 1)=N_{B}(i+j-1, j), \quad i=2, \ldots, M, j=2, \ldots, N_{i} \tag{25}
\end{align*}
$$

where N_{i} denotes the index of last shelter to be bounded for when a bus is departed at time-slot i. From (25), we may have, for instance,

$$
N_{B}(2,1)=N_{B}(3,2)=\cdots=N_{B}\left(N_{2}+1, N_{2}\right)
$$

11. Utility level of buses at shelter j at time-slot i is defined by the ratio between the total number of on-board passengers and the total capacity of buses, i.e.,

$$
\begin{equation*}
U(i, j)=\frac{P^{\mathrm{ob}}(i, j)}{K(i, j)}, \quad j \leq i \tag{26}
\end{equation*}
$$

12. The total number of buses operated throughout the period does not exceed the number of available buses in a corridor:

$$
\begin{equation*}
\sum_{i=1}^{M} N_{B}(i, 1) \leq \bar{B} \tag{27}
\end{equation*}
$$

13. Integer constraint: $N_{B}(i, j)$ are integers for all i and j.
14. Non-negativity constraints: $P(i, j), P^{w}(i, j), P^{\text {off }}(i, j), P^{\text {on }}(i, j)$, $P^{\mathrm{ob}}(i, j), \quad N_{B}(i, j), \quad K(i, j), \quad S(i, j), \quad S_{0}(i, j)$ and $U(i, j)$ are non-negative for all i and j.

3. Transjakarta Case

To illustrate the feasibility of the model, we consider a buses dispatching problem of Transjakarta transport system, also known as busway, a BRT system introduced by the Government of Jakarta. Starting with one corridor in 2004, currently Transjakarta manages twelve corridors consisting of more than 200 shelters. The system covers about 200 kilometers length, served by more than 600 units of bus. On average, Transjakarta delivers more than 350 thousands passengers a day.

To reduce the complexity of the problem, we applied the model only to Corridor 1, which consists of 20 shelters connecting Blok M and Kota. Distance covered by this corridor is 13.8 kilometers and initially served by sufficient number of buses with uniform capacity 85 passengers. We here also limit the time horizon within one session which consists of 23 time-slots. The list of shelters in the corridor, their cumulative distances and average number of passengers in one direction (Blok M to Kota) are given in Table 1. The average number of passengers in a day at certain shelter is the summation of the number of passengers departed from this shelter to various destinations. As an example, Table 2 shows the number of passengers departed from third shelter Bundaran Senayan to other shelters in a session. Buses dispatched in the same time-slot have the same destination or route, while for different time-slot, it may differ. In the corridor, final stop for time-slot $1-5$ is Kota, and subsequently Glodok, Olimo, Mangga Besar, Sawah Besar, Harmoni, Monas, Bank Indonesia, Sarinah, Bundaran HI, Tosari, Dukuh Atas, Setiabudi, Karet, Bendungan Hilir, Polda Metro Jaya, GBK, Bundaran Senayan and Al-Azhar. The determination of final stops in this work is merely affected by the termination of the session, i.e., up to timeslot 23 . Normally the final stop for all buses is Kota, but in this analysis we did not consider any activities beyond time-slot 23 . That is way the trip in the
last time-slot just connects two consecutive shelters, e.g., Blok M to AlAzhar or Bundaran Senayan to GBK as indicated by last row of Table 2. We further assume that the operational unit cost is 10435 rupiahs per kilometer. Data of passengers is for 2011 and obtained from The Management of Transjakarta (UPTB, Unit Pengelola Transjakarta Busway). We aimed to determine the number of dispatched buses at each time-siot which obtained by the total operational cost. We then compared our result when with that using operation research/management science (OR/MS) approach with that accomplished by UPTB.

Table 1. Shelters and their daily riderships (2011)			
No.	Shelter	Distance (km)	Passenger (person)
1	Blok M	0.00	5762
2	Al-Azhar	1.39	1022
3	Bundaran Senayan	2.12	1501
4	GBK	3.67	823
5	Polda Metro Jaya	4.18	854
6	Bendungan Hilir	4.98	1434
7	Karet	5.43	1067
8	Setiabudi	6.01	594
9	Dukuh Atas	6.45	420
10	Tosari	6.89	514
11	Bundaran HI	7.48	909
12	Sarinah	8.11	816
13	Bank Indonesia	8.70	343
14	Monas	9.43	387
15	Harmoni	10.53	694
16	Sawah Besar	11.16	420
17	Mangga Besar	12.07	219
18	Olimo	12.39	149
19	Glodok	12.60	161
20	Kota	13.80	0

Table 2. The number of passengers departed from Bundaran Senayan to other shelters

Time-slot	Shelter																							Total
	12	3	4	5	5	6		7	8		9	10	1		12	13	14	15	16	17	18	19	20	
1																								
2																								
3						4				23	23		4		15			9		20		10	15	100
4			3	8		1	18		13	1	1	15			17	2	4	3		6	13	5	11	120
5			3	8		1			13	1	1	15			17	5	5	3		6	13	5	11	105
6			3	8		1	9		13	1		15			7	5	4	3	4	6	13	7	11	120
7			2	3		4	6		3	5		4	2	2	2	1	3	2	9	3	1	7	3	60
8				1		3	1		1	5		2	1	5	5	2	1	5	3	6	7	9		52
9				7		5	1		1	5			2	6	6	2	1	2	6	7	10			55
10			2	6		2	6		7	3		7	3	4		6	4	6	5	6				67
11			4	5		7	7		6	2		9	6	8		9	8	7	12					90
12			2	4		6	8		3	4		6	5	4		2	7	9						60
13			3	5		2	6			7		4	3	7		8	9							57
14			3	4		6	7		4	5		2	8	7		14								60
15			6	8		7	8		9	6		9	7	10										70
16				24		20	14		34	21			10											140
17			6	17		19	18	19	9	15		26												130
18			4	5		8	7	5	5	9														38
19		13	3	15		9	11	9	9															57
20		9	9	9	13	3	7																	38
21		8	8	9		0																		27
22			9	19																				38
23		17																						17
Grand total																								1501

Table 3 describes the minimum number of dispatched buses and the number of passengers. It is shown that while UPTB dispatched 265 trips per session to transport passengers, calculation based OR/MS suggests a less number, it is only 100 trips required. By multiplying the number of dispatched buses, distance coverage, and operational unit cost according to (1) we corroborate that the total cost is 10366129 rupiahs. Obviously this is a 60 percent cost reduction. However, the consequence of dispatching less number of trips is that not all lining-up passengers could be departed, i.e., there were 1009 adjourned passengers (5.6 percent). This would not be a case of UPTB which decided to depart more trips. The numbers of getting-on and adjourned passengers presented in the table were acquired from passengers flow, as for the case of departure at time-slot 2 is depicted by Table 4. We can inspect that Table 4 accounts all the numbers affected by flow of passengers time by time. It is added up that the total numbers of getting-on and adjourned passengers are 1164 and 51, respectively, as summarized in Table 3. Utility value of 75 percent is come out by averaging utility values performed by buses in every shelter given in the last column of Table 4.

Time-slot Number of dispatched buses (unit) Distance (km) Number of passengers (person) Utility

Buses Dispatching Problem in Urban Transport System
Table 4. Flow of passengers departed at time-slot 2

Time-slot	Shelter	P^{w}	$P^{\text {off }}$	P	S	$P^{\text {on }}$	$P^{\text {ob }}$	S_{0}	P^{a}	U
2	Blok M	163	0	163	0	163	163	347	0	0.32
3	Al-Azhar	70	7	226	354	70	226	284	0	0.44
4	Bundaran Senayan	120	5	341	289	120	341	169	0	0.67
5	GBK	77	25	393	194	77	393	117	0	0.77
6	Polda Metro Jaya	56	23	426	140	56	426	84	0	0.84
7	Bendungan Hilir	145	41	530	125	125	510	0	20	1.00
8	Karet	62	43	549	43	43	510	0	19	1.00
9	Setiabudi	48	50	547	50	48	508	2	0	1.00
10	Dukuh Atas	48	35	560	37	37	510	0	11	1.00
11	Tosari	43	59	544	59	43	494	16	0	0.97
12	Bundaran HI	52	35	561	51	51	510	0	1	1.00
13	Sarinah	71	73	559	73	71	508	2	0	1.00
14	Bank Indonesia	23	56	526	58	23	475	35	0	0.93
15	Monas	24	75	475	110	24	424	86	0	0.83
16	Harmoni	75	59	491	145	75	440	70	0	0.86
17	Sawah Besar	55	70	476	140	55	425	85	0	0.83
18	Mangga Besar	29	102	403	187	29	352	158	0	0.69
19	Olimo	23	131	295	289	23	244	266	0	0.48
20	Glodok	31	132	194	398	31	143	367	0	0.28
21	Kota	0	194	0	510	0	0	510	0	0.00
Total						1164			51	

4. Concluding Remark

We have developed a simple deterministic buses dispatching problem with the main objective is to minimize the number of departed buses from initial shelter each period. The state equations of the model were built based on the flow of lining-up, getting-on, getting-off and adjourned passengers. In the case of Transjakarta transport system, we have demonstrated that OR/MS approach elaborated in this paper can significantly reduce the number of dispatched buses. Extension can be made by relaxing assumption.

For example, it is realized that assumption 5 is too restrictive. Loosing this assumption may expose the stochastic property of the model. In this case, for instance, trip time between shelters is a random variable and passengers arrival should be considered according to Poisson process. Readers may follow [6] for the direction.

Acknowledgement

This research was funded by Directorate General of Higher Education of Republic of Indonesia under scheme of Fundamental Research Grant, No. 26/IT3.41.2/L1/SPK/2013.

References

[1] M. Abkowitz, R. Josef, J. Tozzi and M. K. Driscoll, Operational feasibility of timed transfer in transit systems, J. Transp. Eng. 113 (1987), 168-177.
[2] M. Advani and G. Tiwari, Review of capacity improvement strategies for bus transit service, Indian J. Transp. Manag. October-December (2006), 363-391.
[3] C. Sun, W. Zhou and Y. Wang, Scheduling combination and headway optimization of bus rapid transit, J. Transp. Sys. Eng. IT 8(5) (2008), 61-67.
[4] M. Dessouky, R. Hall, A. Nowroozi and K. Mourikas, Bus dispatching at timed transfer transit stations using bus tracking technology. Technical Report, Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA 90089-0193, 1999.
[5] D. He, Y. Yan, M. Wang and Z. Qiu, Research on the regional bus dispatching problem, Proceedings of the 8th International Conference of Chinese Logistics and Transportation Professionals - Logistics: The Emerging Frontiers of Transportation and Development in China, 2009, pp. 4713-4719.
[6] G. Riano and J. C. Acero, A stochastic bus dispatching model, Working Paper No. 1992/33. Universidad de Los Andes, Colombia, 2004.
[7] J. P. Rodrigue, The Geography of Transport Systems, Routledge, 2013.
[8] J. Wang, D. Ou, D. Dong and L. Zhang, Bus dispatching optimization based on genetic algorithm, Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2010. pp. 1500-1504.

FAR EAST JOURNAL OF MATHEMATICAL SCIENCES (FJMS)

Editorial Board

Editor-in-Chief: K. K. Azad, India

Associate Editors:

George S. Androulakis, Greece
Carlo Bardaro, Italy
Manoj Chanagt, India
Claudio Cuevas, Brazil
Maslina Darus, Malaysia
Massimiliano Ferrara, Italy
Salvatore Ganci, Italy
Demetris P. K. Ghikas, Greece
Lisa M. James, USA
Young Bae Jun, South Korea
Hideo Kojima, Japan
Alison Marr, USA
Manouchehr Misaghian, USA
Cheon Seoung Ryoo, South Korea
K. P. Shum, China
A. L. Smirnov, Russian Federation Chun-Lei Tang, China
Carl A. Toews, USA
Vladimir Tulovsky, USA
Qing-Wen Wang, China
Xiao-Jun Yang, China
Pu Zhang, China

Natig M. Atakishiyev, Mexico
Antonio Carbone, Italy
Yong Gao Chen, China Zhenlu Cui, USA
Manav Das, USA
Shusheng Fu, China
Wei Dong Gao, China
Jay M. Jahangiri, USA
Moonja Jeong, South Korea
Koji Kikuchi, Japan
Victor N. Krivtsov, Russian Federation
Haruhide Matsuda, Japan
Jong Seo Park, South Korea
Alexandre J. Santana, Brazil
Varanasi Sitaramaiah, India
Ashish K. Srivastava, USA
E. Thandapani, India
B. C. Tripathy, India

Mitsuru Uchiyama, Japan
G. Brock Williams, USA

Chaohui Zhang, USA
Kewen Zhao, China

