2015 3rd International Conference on Adaptive and Intelligent Agroindustry (ICAIA)

ICAIA 2015

August 3rd - 4th, 2015 IPB International Convention Center Bogor, Indonesia

> ISBN : 978-1-4673-7404-0 IEEE Catalog Number : CFP15C67-CDR

E

BOGO

Proceedings of

2015 3rd International Conference on Adaptive and Intelligent Agroindustry (ICAIA)

IPB International Convention Center, Bogor, Indonesia August $3^{rd} - 4^{th}$, 2015

Published by :

Department of Agroindustrial Technology Bogor Agricultural University Bogor, Indonesia

Welcome Message from The General Chairs of ICAIA 2015

On behalf of the organizing committee, it is our pleasure to welcome you to International Conference on Adaptive and Intelligent Agroindustry, Bogor, Indonesia. This is the 3rd conference on the topic that is held by the Department of Agroindustrial Technology, Bogor Agricultural University, Indonesia.

The conference is expected to provide excellent opportunity to meet experts, to exchange information, and to strengthen the collaboration among researchers, engineers, and scholars from academia, government, and industry. In addition, the conference committee invited five renowned keynote speakers, i.e. Prof Irawadi from Bogor Agricultural University; Prof Kenneth De Jong from George Mason University, USA; Dr Yandra Arkeman from Bogor Agricultural University; and Dr Guillermo Baigorria from University of Nebraska-Lincoln, USA.

The conference committee also invited Prof Noel Lindsay from University of Adelaide, Australia; Kiyotada Hayashi from National Agricultural Research Center-Tsukuba, Japan; Prof Margareth Gfrerer from Islamic State University of Jakarta, Indonesia; Dr Barry Elsey from University of Adelaide, Australia; Dr Gajendran Kandasamy from Melbourne University, Autralia; and Imperial College London-British, Prof Allan O'Connor from University of Adelaide, Australia; Dr Wisnu Ananta Kusuma from Bogor Agricultural University ,Indonesia; and Dr Frank Neumann from University of Adelaide, Australia, as invited speakers.

This conference was organized by Department of Agroindustrial Technology, Bogor Agricultural University and Asosiasi Agroindustri Indonesia, and technically sponsored by IEEE Indonesia Section. Furthermore, it was supported by Departement of Computer Science, Bogor Agricultural University; Surfactant amd Bionegergy Research Center; PT Bogor Life Science and Technology; Indonesian Ministry of Industry; PT Pachira Distrinusa; and PT Kelola Mina Laut.

I would like to take this opportunity to express my deep appreciation to the conference's committee members for their hard work and contribution throughout this conference. I would like to thank authors, reviewers, speakers, and session chairs for their support to participate in the Conference. Lastly, I would like to welcome you to join ICAIA 2015 and wish you all an enjoyable stay in Bogor.

Sincerely, Dr Yandra Arkeman General Chairs, ICAIA 2015

WELCOMING ADDRESS

Prof. Dr. Ir. Nastiti Siswi Indrasti

Head of Agroindustrial Technology Department Faculty of Agricultural Engineering and Technology Bogor Agricultural University

on

3rdInternational Conference on Adaptive and Intelligence Agroindustry (3rd

ICAIA) Bogor, August, 3 – 4, 2015

Assalamu'alaikum Warohmatullahi Wabarokatuh In the name of Allah, the beneficent and the merciful,

Distinguish Guest, Ladies and Gentlemen

Let me first thank you all for accepting the invitation to participate in this 3rd International Conference on Adaptive and Intelligence Agroindustry (ICAIA). In particular I would like to thank Rector of IPB (Institut Pertanian Bogor/Bogor Agricultural University) Prof. Herry Suhardiyanto for supporting this event as part of the series academic event in celebrating the 52nd Anniversary of Bogor Agricultural University.

We are certainly proud to have been able to assemble this event in IPB, Bogor. The range of participants and audience at this conference is precisely something I would like to stress. Participants who followed the event more than 150 people, coming from various countries including the USA, Australia, Japan, Vietnam, Philippine, Germany and Indonesia. The main goal of the conference is to provide an effective forum for distinguished speakers, academicians, professional and practitioners coming from universities, research institutions, government agencies and industries to share or exchange their ideas, experience and recent progress in Adaptive and Intelligent Agroindustry.

The 2015 3rd International Conference on Adaptive and Intelligent Agro-industry (ICAIA) is the third forum for the presentation of new advances and research results on various topics in all aspects of innovative agro-industry that highlights the development and improvement for today and tomorrow's global need for food, energy, water and medicine. The aim of the conference is to stimulate interaction and cohesiveness among researchers in the vast areas of innovative agro-industry. Innovative Agro-industry has the ability to adapt intelligently to future global challenges, i.e. food, energy, water, and medical. Global challenges needs a new breed of Agroindustry which could produce innovative products to fulfill the needs through advanced processing technology, production systems and business strategy supported by cutting-edge information and communication technology.

The topic for this event is "Empowering Innovative Agroindustry for Natural Resources, Bioenergy and Food Sovereignty". The topics clustered into four main parts:

Track 1: Innovative Agroindustrial and Business System Engineering

- Track 2: Frontier Approaches in Process and Bioprocess Engineering
- Track 3 : Frontier Approaches in Industrial Environmental Engineering
- Track 4 : Intelligent Information and Communication Technology for Adaptive Agroindustry of the Future

This event also hosts four (4) workshops: (1) Strategies for Agroindustry Development (2) LCA for Agroindustry (3) Innovation and Technopreneurship for Agroindustry and (4) Agroindustry Informatics.

Distinguish Guest, Ladies and Gentlement,

Agroindustry transforms agricultural commodities into high value-added products. Agroindustry is industry that process agricultural products to increase their value added significantly by using technology and by considering environmental aspect and sustainability. However, with changing global demand and technology advancement, innovative agroindustry is needed in order to be competitive as well as sustainable. The challenge of future agroindustry is not merely efficiency and productivity anymore, but also the challenge to appropriately apply frontier technology as well as meeting future global demands.

Agroindustry needs to deal with the application of advance technologies and cope future global issues. Current global issues which arise and expected to exist in the future are food sovereignty, renewable energy, sustainable water management and pharmacy. The ability of agro-industry to respond the future global issues and the undoubtedly substantial increase in demand in future decades will be highly dependent on the increased application of existing technologies as well as the exploitation of new and innovative technologies.

The emergence of high technology could be applied in the agro-industry are: nanotechnology, biotechnology, bioinformatics, food processing, food packaging-waste, state-of-the-art computation and many others. The aforementioned high-technology along with computation technology could greatly advance agro-industry from a traditional system into a smart-intelligent and innovative technology. Therefore, in the new millennia, adaptive-intelligent and innovative agro-industry will contribute to solutions to global problems and brings agriculture into perfection.

Hope this conference will also discuss this issue in more detail as it is an important matter for all of us. We should no more think just how to produce high value product but it is also necessarily important how to keep our live in good quality by understanding following old saying... "You do not live at once. You only die once and live every day".

I do not to take up any more of your time with these opening remarks. Let me simply thank you once again for sharing your thoughts with us. Here's wishing every success for the conference. May Allah bless all of us.

Thank you for your kind attention, Wassalamu'alaikum Warohmatullahi Wabarokatuh

COMMITTEE

Condescendent

Prof. Dr. Ir. Herry Suhardiyanto, M.Sc (IPB's Rector)

Steering Committee Chairman Prof. Dr. Ir. Nastiti Siswi Indrasti

Vice Dr. Ir. Yandra Arkeman, M.Eng

Board member

Prof. Dr. Ir. Aziz Darwis
Prof. Dr. Ir. Irawadi Djamaran
Prof. Dr. Ir. Eriyatno, MSAE
Prof. Dr. Ir. Anas M. Fauzi
Prof. Dr. Ir. Syamsul Maarif, M.Eng
Prof. Dr. Ir. Machfud, MS
Prof. Dr. Ir. Djumali Mangunwidjaja

Organizing Committee

Chairman Dr. Ir. Yandra Arkeman, M.Eng Co-chairs : Prof. Dr. Ir. Suprihatin Prof. Dr. Ono Suparno, S.TP, MT

Treasury

Dr. Indah Yuliasih, S.TP, M.Si Dr. Elisa Anggraeni, S.TP, MSc

Programs

Dr. Hartrisari Hardjomidjojo, DEA Dr. Endang Warsiki Ir. Lien Herlina, MSc Dr. Ika Amalia Kartika

Funding

Dr. Meika Syahbana Rusli Dr. Dwi Setyaningsih Prof. Erliza Hambali Dr. Mulyorini Rahayuningsih

Secretariat

Dr. Titi Candra Sunarti Dr. Prayoga Suryadharma Dr. Sugiarto, MS Dr. Faqih Uddin Niken Ayu Permatasari, STP, MSi Angga Yuhistira, STP, MSi Luthfa Jamilah, STP Yulianti Elvin Septiana

Paper & Proceedings

Prof. M. Romli Prof. Marimin Prof. Ani Suryani Prof. Erliza Noor Dr. Liesbetini Hartoto Dr. Moch Yani

Accomodation dan Logistics

Dr. Andes Ismayana Dr. Ade Iskandar Dr. Muslich Dr. Sapta Raharja

Design, Web and Publication

Dr. Taufik Djatna Dr. Aji Hermawan M. Arif Darmawan, MT Teguh Adi Setia, AMd

Time	Activities				
Monday, Augu	ust 3 ^{ra} 2015				
08.00 - 09.00	Registration				
09.00 - 10.00	 Opening Ceremony Welcoming Address: Prof. Nastiti Siswi Indrasti (Head of DAT, Fateta, IPB) Welcoming Speech Head of Bogor Regency Conference Opening: Prof. Herry Suhardiyanto (Rector of IPB) Opening Speech and Conference Opening : Minister of Industry Indonesia * Launching Expose International program DAT 				
10.00 - 10.05	Photo Session				
10.05 - 10.15	Coffee break				
10.15 - 10.45 10.45 - 11.30 11.30 - 12.00 12.00 - 12.30	 Keynote Speech : 1. Prof Irawadi (Bogor Agricultural University, Indonesia) 2. Prof. Kenneth De Jong (George Mason University, USA) 3. Dr. Yandra Arkeman (Bogor Agricultural University, Indonesia) 4. Dr. Guillermo Baigorria (University of Nebraska, Lincoln, USA) 				
12.30 - 13.30	Lunch break				
13.30 - 13.50 13.50 - 14.10 14.10 - 14.30 14.30 - 14.50 14.50 - 15.10	Plenary Session 1 : Prof. Noel Lindsay (University of Adelaide, Australia) Dr. Kiyotada Hayashi (National Agricultural Research Center, Tsukuba, Japan) Prof. Margareth Gfrerer (Islamic State University of Jakarta, Indonesia) Dr. Barry Elsey (University of Adelaide, Australia)				
14.50 - 15.10 15.10 - 15.45	Ir. M. Novi Saputra (Marketing Director KML Food Group) Discussion				
15.30 - 15.45	Coffee break				
15.45 - 18.00	Parallel session A, B and C				
18.00 - 21.00	Welcome Dinner				

AGENDA

Time	Activities		
Tuesday, Augu	st 4 rd 2015		
08.30 - 09.00	Registration		
	Plenary Session 2 :		
09.00 - 09.20	Dr. Gajendran Kandasamy (PhD in Physic, Melbourne		
	University ; PhD in Innovation Imperial Collage, London)		
09.20 - 09.40	Prof. Allan O'Connor (University of Adelaide, Australia)		
09.40 - 10.00	Dr. Eng. Wisnu Ananta Kusuma, ST, MT (Bogor Agricultural		
10.00 10.00	University, Indonesia)		
10.00 - 10.20	Dr. Frank Neumann (University of Adelaide, Australia)		
10.20 - 10.45	Discussion		
10.45 12.00			
10.45 – 13.00	Parallel Session A, B and C		
12.00 14.00	Lunch brook		
13.00 - 14.00	Lunch break		
14.00 - 15.30	Parallel Workshop		
1100 1000	Strategies for Agroindustry Development		
	• LCA for Agroindustry		
	 Innovation and Technopreneurship for Agroindustry 		
	Agroindustrial Informatics		
15.30 - 15.45	Coffee Break		
15.45 - 16.15	Closing remark		

TABLE OF CONTENTS

Welcoming address from general chairs	i
Welcoming address from head of Agroindustrial Technology Departement	ii
Bogor Agricultural University	
Committee	iv
Agenda	v
Table of Content	vii
Abstract of Invited Speakers	_
Noel Lindsay	1
Kiyotada Hayashi	2
Barry Elsey	3
Frank Neumann	4
Yandra Arkeman	5
Wisnu Ananta Kusuma	6

1
3
9
б
3
4
1
7
_
3

Innovation Design Process for Gayo's Coffee Quality Improvement	59
Rahmat Pramulya, M Syamsul Ma'Arif and Tajuddin Bantacut	
Technology Innovation Adoption to Improve the Performance of Dairy	67
Small-Medium Enterprises (SME): Case study in Pangalengan-Bandung	
Regency, West Java, Indonesia	
Nuni Novitasari, Titi Candra Sunarti and Nastiti Siwi Indrasti	
Process Innovation for Producing Bioethanol from Oil Palm Empty Fruit	76
Bunches by Improving Fermentation Conditions	
Fitriani Kasim, Novizar Nazir and Syamsul Ma'Arif	
Managing Innovation through Knowledge Sharing in An Indonesia Coconut SMF	82
Muchammad Kodivat P. Machfud, Nastiti S Indrasti	
Increasing Added Value of Banana by Producing Synbiotic Banana "Sale"	88
Using Innovation & Technology Strategy Approach	00
Eka Ruriani	
Innovation Palm Fronds Briquettes Through Noncarbonization Process	93
Petir Papilo. Svamsul Ma'Arif and Yandra Arkeman	10
Graphic Design Innovation As Brand Identity For "Mahlzeit N 'Das Brot "	100
Bread Packaging	
Zulkarnain, Deny Dwi Lestari and M. Svamsul Ma'Arif	
An AHP Application for Selecting A Business Innovation Strategy of	104
Chocolate SMEs in East Java	
Yani Kartika Pertiwi, M. Syamsul Maarif and Machfud	
Understanding local food consumers and their motivations: A case study in	110
Padang city	
Poppy Arsil	
Spatial Model Design for Competitive Improvement of Small Medium	116
Scales Enterprises (Case Study: Bogor City)	
Hartrisari Hardjomidjojo, Harry Imantho and Armaiki Yusmur	
System Analysis and Design for Selecting Chitin and Chitosan Industry	121
Location by Using Comparative Performance Index (CPI) Method	
Dena Sismaraini, Nastiti S. Indrasti and Taufik Djatna	
Arduino-Based Temperature Monitoring Device for Cold Chain	129
Transportation	
Delmar Zakaria Firdaus and Endang Warsiki	
Development of Downstream Cocoa Industry: Exploring the Role of	134
Government and Small and Medium Industry in Partnership	
Farda Eka Kusumawardana, Yandra Arkeman, Titi C Sunarti	
The Role of Communication in the Technology Transfer (A Case Study at	140
the Center for Agro-based Industry)	
Anindita Dibyono, Sukardi, Machfud	
The Center for Pulp and Paper Appraising its Productivity in Generating	147
Industry-Applicable Research: A Best Practice Illustration	
Ahmad Rudh Firdausi, Anas M Fauzi, Machfud	
Frontier Approaches in Process and Bioprocess Engineering	
Identification of Flavor Compounds In Cemcem (Spondiazpinata (L.F)	156

Kurz) Leaf Extra

Luh Putu Wrasiati, Ni Made Wartini and Ni Putu Eny Sulistyadewi	
Synthesis and Characterization of Nanosilica from Boiler Ash with Co-	160
Precipitation Method	
Wahyu Kamal Setiawan, NastitiSiswiIndrasti and Suprihatin	
The Comparison Of Media on the Microalgae Nannochloropsis sp. Culture	165
Anak Agung Made Dewi Anggreni, I Wayan Arnata and I B Wayan	
Gunam	
Identification of Media and Indicator Liquid as A Recorder Smart Label	169
Endang Warsiki and Riris Octaviasari	
The Effect of Consentration of Mes Surfactant From Palm Oil and	174
Consentrasion of Inorganic Salt to Interfacial Tension Value	
Rista Fitria, Ani Survani, Mira Rivai and Ari Imam	
Effect of Nano Zinc Oxide On Bionanocomposite	180
Siti Agustina, Nastiti Siswi Indrasti, Suprihatin and Nurul Taufiqu	
Rohman	
The Effects of Molar Ratio Between 80% Glycerol And Palm Oil Oleic	186
Acid on the Synthesis Process of Ester Glycerol	
Mira Rivai, Erliza Hambali, Giovanni Nurpratiwi Putri, Ani Survani,	
Pudii Permadi, Bonar T.H Marbun and Ari Imam Sutanto	
Selecting Part of Natural Fiber EFB which has Best Mechanical Strength	192
through Tensile Test Analysis for Composite Reinforced Material	
Farkhan, Yohanes Aris Purwanto, Erliza Hambali and Wawan	
Hermawan	
Effect Of Ethyl Methane Sulfonate (EMS) On Growth Rate, Cell Size, Fatty	199
Acid Content And Antioxidant Activities Of <i>Dunaliella</i> sp.	
Mujizat Kawaroe and Amelia Gustini	
Identification of phenol red as Staphylococcus aureus indicator label	206
Dunaliella sp.	
Melati Pratama, Endang Warsiki and Liesbetini Hartoto	
Enhancing Ethanol Tolerant of <i>Escherichia coli</i> Recombinant by Glutamate	211
Addition under Aerobic Conditions	
Indra Kurniawan Saputra, Prayoga Survadarma and Ari Permana	
Putra	
In Vitro Potentifal of Antibacterial Marine Microalgae Extract	216
Chaetocerosgracilis Toward Staphylococcus epidermidis Bacteria	
Ardhi Novrialdi Ginting, Liesbetini Haditiaroko and Iriani	
Setvaningsih	
The Potential Applications of Modified Nagara Bean Flour through	221
Fermentation for Innovation of High Protein Analog Rice	
Susi. Lya Agustina and Chondro Wibowo	
Studies on the Characteristics of Pasavu (Pasta of Waste-Cassava)	226
Fortification as a New Product Development	
Marleen Sunyoto, Roni Kastaman, Tati Nurmala and Dedi Muhtadi	
Optical And Particle Size Properties Of Sargassum Sp Chlorophyll As Dye-	234
Sensitized Solar Cell (DSSC)	
Makkulawu Andi Ridwan and Erliza Noor	
Alkaline Pre-Treatment of <i>Gelidium latifolium</i> and <i>Caulerpa racemosa</i> for	239
Bioethanol Production	

Dwi Setyaningsih, Neli Muna, Elisabeth Yan Vivi Aryanti and Anastasya Hidayat	
New Trends in Industrial Environmental Engineering & Management	
Formulating a Long Term Strategy for Sustainable Palm Oil Biodiesel	247
Development In Indonesia: Learning From the Stakeholder Perspective	
Beny Adi Purwanto, Erliza Hambali and Yandra Arkeman	
Quality Improvement of Polluted River Water Used as Raw Water in Clean	253
Water Supply by Using Biofiltration	
Suprihatin, Muhammad Romli and Mohamad Yani	
An Empirical Investigation of the Barriers to Green Practices in Yogyakarta	260
Leather Tanning SMEs	
Dwi Ningsih, Ono Suparno, Suprihatin and Noel Lindsay	
Preliminary Study For CO ₂ Monitoring System	267
Farhan Syakir, Rindra Wiska, Irvi Firqotul Aini, Wisnu Jatmiko and	
Ari Wibisono	
Designing a Collaboration Form to Overcome Innovation Resistance in	273
Waste Management Practices in Lampung Tapioca Industry	
Nur Aini Adinda, Suprihatin, Nastiti Siswi Indrasti	
Pollution Reducing Opportunities for a Natural Rubber Processing Industry:	280
A Case Study	
Syarifa Arum Kusumastuti, Suprihatin and Nastiti Siswi Indrasti	200
Creating the Standard for Specific Energy Consumption at Palm Oil	286
Industry	
Alla Firdaus and M Syamsul Ma Arii Effects of Polm Doo Non Jonic Surfactant of on Additive in Duproferin	200
Insection of Pann-Dea Non-forme Surfactant as an Additive in Bupfolezin	290
Fifin Nisya Pahmini Mira Piyai Nobel Cristian Siragar Ari Imam	
Sutanto and Ainun Nurkania	
Sutanto and Amun Nurkania	
Intelligent Information & Communication Technology for Adaptive	
Agroindustry of the Future	
Design of Web-Based Information System With Green House Gas Analysis	294
for Palm Oil Biodiesel Agroindustry	
Yandra Arkeman, Hafizd Adityo Utomo and Dhani S. Wibawa	201
Sequential Patterns for Hotspots Occurence Based Weather Data using	301
Clospan algorithm	
Tria Agustina and Imas S. Sitanggang	201
How to Deal with Diversity in Cultivation Practices using Scenario	306
Generation Techniques: Lessons from the Asian rice LCI Initiative	
Kiyotada Hayashi, Yandra Arkeman, Elmer Bautista, Marila Mond	
Hanafian, Jong Sik Lee, Masanori Saito, Dhani Satria, Kolchi Sheheteke, Suprihetin, Tion Tron Minh and Van Vu	
Development of Life Cycle Inventories for Delm Oil in North Sumetree	200
Modelling Site Specific Activities and Conditions	309
Vita D Lelvana Erwinsvah and Kivotada Havashi	
Sequential Pattern Mining on Hotspot Data using Prefix Span Algorithm	312
Nida Zakiya Nurulhad and Imas S Sitanggang	515
The Zakiya Haramay and mus D. Dhanggung	

An Intelligent Optimization Model Analysis and Design of Bio-filtration in 317 Raw Water Quality Improvement

Ramiza Lauda and Taufik Djatna

Development Of People Food Consumtion Patterns Information System 323 Based On Webmobile Application.

Fadly Maulana Shiddieq, Roni Kastaman and Irfan Ardiansah Association Rules Mining on Forest Fires Data using FP-Growth and 330 ECLAT Algorithm

Nuke Arincy and Imas S. Sitanggang

Development Of Expert System For Selecting Tomato (Solanum 334 Lycopersicon) Varieties

Erlin Cahya Rizki Amanda, Kudang Boro Seminar, Muhamad Syukur and Noguchi Ryozo

Developing Life Cycle Inventories for Rice Production Systems in 340 Philippines: How to Establish Site-specific Data within the General Framework

Elmer Bautista, Kiyotada Hayashi and Masanori Saito

Construction of Site-specific Life Cycle Inventories for Rice Production 343 Systems in Vietnam

Tran Minh Tien, Bui Hai An, Vu ThiKhanh Van and Kiyotada Hayashi

Study on Life Cycle Benefit Assessment as a tool for promoting the solution 346 of Environmental Problems

Tetsuo Nishi

Real Time Monitoring Glycerol Esterification Process with Mid IR Sensors 350 using Support Vector Machine Classification

Iwan Aang Soenandi, Taufik Djatna, Irzaman Husein and Ani Suryani

Extraction of Multi-Dimensional Research Knowledge Model from 356 Scientific Articles for Technology Monitoring

Arif R. Hakim and Taufik Djatna

Performance of Artificial Lighting Using Genetics Algorithms 362 Limbran Sampebatu

The Application of Fuzzy-Neuro Approach for ERP System Selection: Case 367 Study on an Agro-industrial Enterprise

Joko Ratono, Kudang Boro Seminar, Yandra Arkeman and Arif Imam Suroso

Innovation Briquette of Fronds Oil Palms Through Non Carbonization Process

Petir Papilo¹, Chairum Bahri², Syamsul Maarif³, Yandra Arkeman⁴ ^{1,2)} Departement of Industrial Engineering – UIN Sultan Syarif Kasim Riau ^{3,4)} Departement of Agricultural Industrial Technology –Bogor Agricultural University

Email : ¹⁾pilo_ukm@yahoo.com, ²⁾careumtin07@yahoo.com, ³⁾syamsul4958@gmail.com, ⁴⁾yandra@ipb.ac.id

Abstract - The development of fuel biobriket is one attempt to overcome the problem of the energy crisis, especially for household cooking needs. Currently, briquettes made from waste oil palm fronds are already being developed. Availability of abundant raw materials and process technology is growing, causing briquettes of the palm fronds to be cheaper compared to other biomass briquettes. One process that can be applied to obtain more economical results is through a non-carbonization process. The results of the study, using three types of specimens, has obtained the highest calorific value of 3,477.67 kCals/kg, the production cost of 830 IDR/kg and with a selling price that can be offered to consumers 1,300 IDR/kg.

I. INTRODUCTION

urrently, the energy needs of the Indonesian society is still highly dependent on fossil fuels. For households, the majority of energy needs relied on oil and LPG. Therefore, the search for alternative fuels will lessen the burden on these types of fuels and create a healthier environment while increasing profits.

Indonesia's energy consumption continues to increase at the historical average growth of 3.09% per year, from 2000 until 2010, where the number rose from 737 million BOE in 2000 to 1.012 million BOE in 2010. The highest energy consumption is dominated by the use of fuel oil in 2010, which reached a total of 31%, while biomass consumption in the form of firewood and charcoal at 28%, and the use of gas and coal by 13%. On the other hand, the supply of energy, particularly oil, in 2010 reached 344.89 million BOE with proven reserves, which can only provide oil for 11 years [1].

While the subsidized fuel quota for the year 2010, is as much as 38.228 million kiloliters and non-subsidized fuel quota until 2010 is as much as 27.041 million kiloliters, Indonesia has been importing fuel from other countries amounted to 26.02 million kiloliters [1].

As an agricultural country, Indonesia has a very large potential of biomass energy. Utilization of biomass energy has long been done and includes the oldest energy which role is very great, especially in the countryside. It is estimated that approximately 35% of total national energy consumption comes from biomass. The energy generated has been used for various purposes. For example, household needs (cooking and home industry), drying the agricultural harvest and timber industries, power plants in the timber industry and sugar [2].

One source of biomass energy that can be generated through the processing of agricultural waste is a solid fuel known also with briquettes. Basically, the briquettes can be generated through unused materials such as garbage, sawdust, rice husks or coconut shells. In studies that have been carried out, an alternative source of raw materials that will be used to produce briquettes are wastes produced by oil palm plantations, in this case is a waste of palm fronds.

This experimental research aimed at creating new innovations in alternative energy, especially through the utilization of raw materials such as waste oil palm fronds. Through the use of alternative energy sources, such as palm oil fronds briquette, it is expected to increase economic value and benefits to meet the needs of cooking in rural areas.

II. LITERATURE REVIEW

A. Innovation Concept

Innovation is the conceptualization activity and ideas to solve the problem by delivering economic value for the company and social value for the community. Innovation started from existing condition, then a new condition was created (value-added) [3]. Innovation can be classified into several types, such as administrative innovation, technical innovation, product/ service innovation, process innovation, radical innovation, and incremental innovation [4].

Administrative innovation is related to the organizational structure and administrative processes that are not directly related to the basic activities and work of an organization. This is directly related to the Company's management. *Technical innovation* is related to technology products, services, and production processes. *Product innovation* is a new product or service that was introduced by outside users or because of market requirements. *Process innovation* is a new element introduced in a

production company or service operations. Its uses input from raw materials, specification of tasks, jobs and information, and equipment used for the production of a product or making services.

Furthermore, *radical innovation* and *incremental innovation* can be defined as the degree of the changes made in the implementation of enterprise adoption. *Radical Innovation* is a reorientation and innovation that are nonroutine basic procedures and the company's activities show a clear beginning of an implementation of the innovation. While *incremental innovation* is innovation routine, varied and instrumental [4].

B. Technological Innovation in briquetting

Briquette is one of the alternative fuels that can be used as a substitute for firewood cooking, especially on households that are located in rural areas. Various organic wastes have been widely used as raw material for making briquettes. Some of them are sawdust [5], rice husks, [6], a mixture of coconut shells and sawdust, [7], [8], corn cob [9], [10]. In addition, agricultural wastes also started to be used in producing the briquettes from oil palm plantations. Some parts of palm oil can be used as raw material for producing the briquettes include palm shells [11], empty fruit bunches [12], and also oil palm fronds or midrib [13].

Waste oil palm fronds are the most numerous and not fully utilized. Each harvesting, as many as 7-10 palm fronds, which should be cut down to make it easy for the process of taking fresh fruit bunches of oil palm. Palm fronds that had been cut down, are usually just stacked side section under the oil palm trunk. Its take a long time for decomposition and fertilization to occur naturally.

Generally, the process of briquetting is mostly done through the carbonization process, where the raw materials that have been destroyed, especially during altering process before the pressing process. But now, many researchers who have done briquetting without carbonization process [14]. In producing briquettes through the non carbonization process, requires certain adhesive materials such as starch and sago [15].

The parameters that must be considered in producing briquettes include ash content (ash content), water content (moisture), the levels of volatile matter (volatille matter), activated carbon, as well as the value of the pressure exerted. To obtain a quality briquettes with high calorific value, moisture content should be no more than 15%. Water content is strongly influenced by the duration of the drying process as well as the adhesive substance that is used [16]. Furthermore, the length of the ignition briquette influences the level of pressure exerted during the pressing process.

Briquettes produced through non-carbonization, relatively cheaper and efficient than the briquettes produced carbonization. This is because, on the noncarbonization process does not require the combustion process and generally shorter than the carbonization process.

C. Oil Palm Fronds.

Oil palm (Elaeis guineensis Jacq) is a plant made up of pieces that includes family Palmae. Elaeis genus name is derived from the Greek word meaning oil, while guineensis species originating from Guinea, which is a place where a botanist named Jacquin discovered oil palm plantations were first on the coast of Guinea [17]

Palm fronds or midrib oil palm is a kind of solid waste generated during the year by oil palm plantations. Palm frond containing lignin (24.5-32.8%), hemicellulose (20.5-21.83%), cellulose (54.35-62.6%), extractive substances (2.35-13.84%), silica (1.6-3.5%), and ash (2.3-2.6%). On palm leaf midrib cross section consists of two parts the cortex and central vascular, while the palm leaf midrib microscopically consists of three major vascular, skin, basic parenchyma and xylem.[18].

D. Energy Value in Palm Oil Waste

At this time, oil palm plantations have great potential to be converted into a variety of energy products. In addition to its main products produce palm oil (Crude Palm Oil - CPO), waste from oil palm plantations have also been developed to produce a variety of other byproducts. The types of waste palm oil in the first generation are solid waste consisting of empty fruit bunches, fronds or midrib and shell.

The energy content of several palm oil waste, can be described in the Table I, [19] :

TABLE I				
CALORIFIC VALUE OF THE ENERGY FROM WASTE				
OIL PALM (BASED ON DRY WEIGHT)				

······				
Waste	Mean of	Calorific Range		
	Calorific Value	(kJ/kg)		
	(kJ/kg)			
Empty Bunches	18.795	18.000 - 19.920		
Fiber	19.055	18.800 - 19.580		
Shell	20.093	19.500 - 20.750		
Stem	17.471	17.000 - 17.800		
Fornds/ Midrib	15.719	15.400 - 15.860		

E. Briquette Process Technology

Generally, the process of making all kinds of briquettes is the same, that is by giving pressure to the ash from the combustion or refining of raw materials so that the raw materials form a solid powder.

Briquetting technology can be divided into three ways [20]:

- High pressure briquetting.
- Briquetting pressure with heating medium.
- Low pressure briquetting with binder.

Briquette processing can be done by carbonization and non carbonization processes. To produce briquettes without carbonization process, use the following steps :

94

Fig 1. Briquette Non Carbonization Process

F. Proximate Test of Briquette

Proximate test is performed to determine the characteristics of solid fuel. In this study, conducted proximate test consists of three tests, such as calorific measurement, test the moisture content and ash content test [19].

a. Calorific Measurement

Calorific values determine the quality briquettes. To determine the calorific value of a solid fuel, the testing is done by using kaloribomb meter. Calorific value of briquettes, can also be measured by the following equation. First, calculate the highest heat value (HHV) by the equation :

$$HHV = (T_2 - T_1 - T_{kp}) \times c_v (kj/kg) \qquad (1)$$

while, the lower heating value (LHV) is calculated the equation according to the formula:

$$LHV = HHV - 3240 \text{ (kj/kg)}$$
(2)

where, T1 are temperatures of the cooling water before it is turned on (°C), T2 are temperatures after the cooling water is turned on (°C), Tkp are temperatures rise of the wire igniter = 0.05 (°C), and Cv are Heat types of tools = 73,529.6 (kJ / KGC).

b. Water Content Test

Test the water content is done by comparing the weight of chips before being dried with a weight of chips after being dried by using a machine and a drying oven under the hot sun. Formulation:

Water Content (%) =
$$\frac{G_0 - G_1}{G_0} \times 100\%$$
 (4)

where,

c. Ash Content Test

Furthermore, ash is the remaining part of the combustion products, in this case is the combustion of briquettes. One of former of the ash is silica. Unfavorable influence on the calorific value of briquettes, it can cause the quality of the briquettes to be low [21].

The ash content can be measured by the following equation :

Ash Content (%) =
$$(C/A) \times 100\%$$
 (5)

where:

A = weight of the material before combustion (g) (g)

 $C = The \ weight \ of \ ash \ / \ residue \ after \ combustion \ (g)$

III. MATERIALS AND METHODS

The innovation in the use of oil palm fronds into briquettes is designed in a research experiment. Design of experiments is defined as a series of activities and tests that aim to make changes to the input variables of the process or system so that we can know and identify the cause of a change in output. Experimental design can used to interpret a study design with every step and action that truly defined such that information relating to can be studied and obtained.

A. Materials

In this study, is the use of oil palm fronds or midrib as the main raw material. Midrib obtained from three different places, such as from the local palm oil in Pekanbaru (K1), midrib of palm oil plantations in PT Asian Agri (K2) and the midrib of palm plantations located in the area of Kampar Kiri Danau Raja (K3).

B. Stage of Processes.

In designing briquettes from palm fronds, there are several stages of processing, which describes the process of making briquettes. The stages of the experiment in making briquettes from oil palm fronds are shown at fig-1.

a. Preparation of Raw Materials

The main raw material used to produce briquettes are palm fronds. To produce good midrib and simplify subsequent process, first, it is necessary to remove the leaves and palm leaf rib that exist in stems of midrib. Two-thirds of the midrib is used the rost is discanded due to its hardness and large size, which can damage the machine chooper. After the cleaning process of leaves and palm leaf rib, palm fronds have an average weight of 7 kg. Next, midrib cut into smaller pieces (approximately 0.5 until 1 m) to make ease the process of chopping.

 G_0 = sample weight before drying (g) G_1 = weight of sample after drying (g).

Fig 2. Diagram of fronds oil palms briquette processes

b. Chooping Process

In this experiment, the process of chopping is done in three ways and with different equipment. Thus, yield results different of the chopper. For the first specimen (K1), the process is done by using coconut grater machines. Then for the second specimen (K2), done using machines chooper-1. And for the third specimen (K3) was performed using machine chooper-2. The results of these three tools chopping process can be seen in the fig 3.

Fig 3. Results of the process chopping with Three different tools

c. Drying Process

The drying through two processes, such as drying material under the sun, or can be done using equipment such as machine oven. To enable the raw material to dry completely, it needs to be done drying process by using machine oven at 110oC temperature for 10 hours.

After the drying process using the oven, the drying process can continue under the hot sun directly. It aims to ensure that water vapor is trapped inside the chips can be completely lost. The results of the drying process that has been done by several methods, can be seen in the following figure.

Fig 4. Results of drying process

d. Weighing Process

In order to obtain the mass of a standard size, the raw materials that have been dried to be weighed. This process is done to facilitate the briquetting process with a view to making briquettes with almost the same weight. It uses digital weighing scales with three variations of weight, which is 20 grams, 30 grams and 50 grams.

Fig 5. The result of the weighing process

e. Moulding Process with Press Machine

The next process is the process of molding the raw material into bars of briquettes using a press machine with an average pressure of 200 kN. The higher the level of pressure, will give best results. The high value of pressure will affect the duration of the combustion process briquettes.

Fig 6. Results of the briquetting process

IV. RESULTS

A. Proximate Test Results

The results of measurements of heat from the existing three specimens can be seen in the following table :

TABLE II

CALORIFIC VALUE TEST RESULTS				
Specimens	Calorific Value	Calorific Value		
	(kJ/kg)	(kCal/kg)		
K1	14,550.90	3,477.67		
K2	13,288.11	3,175.86		
K3	13,436.49	3,211.32		
Rat-rata	13,758.50	3,288.28		

Through the table it can be seen that, the highest calorific value found in first raw material (K1), is 14,550.90 kJ / kg, equivalent to 3,477.67 kCal / kg. Whereas the average heat that can be generated from the three specimens is equal to 13,758.50 kJ / kg, equivalent to 3,288.28 kCal / kg.

Moisture content before briquetting process contained in the raw material, are as follows:

 TABLE III

 WATER CONTENT TEST RESULTS

Specimen	Initial weight (gr)	Dry weight (gr)	Water weight (gr)	Water Contents (%)	Biomass Contents (gr)
K1	1,614.7	613.6	1001.1	62.0%	38.0%
K2	975.4	416.4	559.0	57.3%	42.7%
K3	1,379.8	464.4	915.4	66.3%	33.7%

Differences in the test results briquettes moisture content of oil palm fronds are due to the different stages of manufacture of the briquettes palm fronds with other biobriket. This is due to the process of briquetting palm fronds, the testing phase moisture content is calculated after the raw materials undergo a drying process prior to the briquetting process. While, on the other biobriquette, testing the water content is done after the press process.

Furthermore, the ash content of the briquettes, can be seen through next table:

TABLE IVASH CONTENT TEST RESULTS

Specime	ens (gr)	Initial Weight (gr)	Residu Weight (gr)	Ash Content (%)
K1	1	20	0.24	1.20%
	2	30	0.76	2.53%
	3	50	2.25	4.50%
K2	1	20	0.33	1.65%
	2	30	0.61	2.03%
	3	50	3.19	6.38%
K3	1	20	1.67	8.35%
	2	30	2.68	8.93%
	3	50	6.29	12.58%

B. Economic Value Analysis

Some of the key aspects in determining the economic value of the product briquettes include: capacity of production equipment, raw material prices, cost of production, as well as the expected profit margin.

In this study, pembriktan done using equipment with a capacity of up to 1,260 kg / day. In addition, capacity chooper machine and drying machine each is 7,000 kg / day and 3,000 kg / day. The following table, describes the the full capacity of machine and the number of machines needed to produce briquettes palm fronds.

 TABLE V

 CAPACITY AND THE NUMBER OF MACHINES

Machine	Maximum Capacity (kg)	Capacity in Use (kg)	Output (kg)	Eff (%)	Qty (Unit)
Chooper	7,000	2,071.72	1,968.13	29.60%	1
Dryer	3,000	1,968.13	1,082.47	65.60%	1
Press	1,260	1,082.47	1,050.00	85.91%	1

To produces 1,050 kg of briquettes, require raw materials 2,071.72 kg midrib, or as much as 259 kg rod, (assuming a weight of 1 stem midrib is 8 kg). In the process of briquette production drying process causing severe depreciation very large, up to 45%. This is because, at this stage of drying the chip should be completely non water.

To produce briquettes, require the production costs, including the cost of purchasing raw materials, labor cost, cost of energy needs, cost of purchase of equipment and depreciation costs

Totally, requirement of production cost are Rp. 871,000/day. It means, to produces 1 kg of briquettes, it will cost Rp. 830. So, if the maximum profit margin of 50%, the product briquettes can be marketed at a price of Rp. 1,300/kg.

When compared with kerosene and gas (LPG), the selling price of briquettes, relatively much cheaper. In Indonesia, currently for 3 kg LPG is sold at 4,750 IDR/kg, while kerosene is 2,500 IDR/lt or 3,125 IDR/ kg (assuming the density of kerosene is 0.8 kg/lt) [22]. However, due to very limited supply, the price of kerosene in the market, could reach 15,000 IDR/lt or equivalent to 18,750 IDR/kg. The calorific value that can be produced from the kerosene is 11,000 kCal / kg, LPG gas amounted to 11,900 kCal /kg [23]. Meanwhile, heat oil palm fronds briquettes amounted to 3,477.67 kCal/kg.

By comparing between the selling price and the calorific value that can be produced by each of the fuel, it can be seen that the price/calorie kerosene is 1.70 IDR and price/calorie LPG is 0.39 IDR. While palm oil briquettes, value price/calorie is 0.37 IDR. So, from the comparison, palm fronds briquettes more efficient than kerosene and LPG gas.

Fuels	Calorific (kKal/kg)	Prices (IDR/kg)	Price/kCal (IDR/kKal)
Kerosene	11,000.00	15,000	1.702
LPG	11,900.00	4,750	0.399
Briquette	3,477.67	1,300	0.373

V. CONCLUSION

Innovation on design product of alternative energy that was done in this study, produced one of the solid fuel in the form of briquettes by utilizing waste oil palm fronds. It is very important to continue to carry out the process of innovation, particularly in the development of new sources to meet growing energy needs. Various strategies can be applied innovations, both from a technical aspect as well as from other aspects.

To produce innovative products, many ways that can be done, including through elaboration and combination of the results of research and development has been done by previous researchers, will be a starting point in creating innovative products that have economic value in the future.

REFERENCES

- [1] BPPT, "Outlook Energi IndonesiaTahun 2013.
- [2] Syamsiro dan Saptohadi, "Pembakaran Briket Biomassa Cangkang Kakao : Pengaruh Temperatur Udara Preheat". Makalah Seminar Nasional Teknologi, Yogyakarta, 2007.
- [3] Shilling, M.A., "Strategic Management of technologycal Innovation". New York: Mcgraw-Hill, 2005.
- [4] Damanpour, Organizational Innovation: A Meta-Analysis Of Effects Of Determinants and Moderators. Academic of Management Journal, September 1, 1991 34:3 555-590;
- [5] Imoisili et.al, Production and Characterization of Hybrid Briquette from Biomass, British Journal of Applied Science & Technology, 2014.
- [6] Jamilatun, Kualitas dari Sifat-sifat Penyalaan dari Pemabakaran Briket Tempurung Kelapa, Briket Serbuk Gergaji Kayu Jati, Briket Sekam Padi dan Briket Batubara. Proseding Seminar Nasional Teknik Kimia, Yogyakarta, 2011.
- [7] Yudanto & Kusumaningrum, "Pembuatan Briket Bioarang dari Arang Serbuk Gergaji Kayu Jati", Jurusan Teknik Kimia, Universitas Diponegoro, 2008.
- [8] Ndaraha,"Uji Komposisi Bahan Pembuatan Briket Bioarang Tempurung Kelapa dan Serbuk Gergaji terhadap Mutu yang Dihasilkan", Departemen Teknologi Pertanian, Fakultas Teknik, Universitas Sumatera Utara, Medan, 2009.
- [9] Surono, Peningkatan Kualitas Pembakaran Biomassa Limbah Tongkol Jagung sebagai Bahan Bakar Alternatif dengan Proses Karbonisasi dan Pembriketan. Jurnal Rekayasa Proses Vol. 4. No.1. 2010.
- [10] Hamidi, et al, Pengaruh Penambahan Tongkol Jagung Terhadap Performa Pembakaran Bahan Bakar Briket Blotong (Filter Cake). Jurnal Rekayasa Mesin, Vol. 2 No.2. 2011.
- [11] Wijayanti, "Karakteristik Briket Arang dari Serbuk Gergaji dengan Penambahan Arang Cangkang Kelapa Sawit", Departemen Kehutanan, Fakultas Pertanian Universitas Sumatera Utara, Medan, 2009..
- [12] Purnama, Pemanfaatan Limbah Cair CPO Sebagai Perekat Pada Pembuatan Briket Dari Arang Tandan Kosong Kelapa Sawit. Jurnal Teknik Kimia Vol 18. No.3, 2012.

- [13] Yusuf, M, et al, "Use Of Palm Midrib (Elaeis Guineensis Jacq.) As Raw Material For Charcoal Briquette". Departement of Forestry, Faculty of Agriculture, University of Riau, 2011.
- [14] Wilasita et al, "Pemanfaatan Limbah Tongkol Jagung dan Tempurung Kelapa Menjadi Briket Sebagai Sumber Energi Alternatif dengan Proses Karbonisasi dan Non Karbonisasi", Laboratorium Pengolahan Limbah Industri Jurusan Teknik Kimia FTI-ITS Surabaya, 2011.
- [15] Lestari et al, Analisis Kualitas Briket Arang Tongkol Jagung yang Menggunakan Bahan Perekat Sagu dan Kanji. Jurnal Aplikasi Fisika Vol. 6. No. 2, 2010.
- [16] Fauziah, N, Pembuatan Arang Aktif Secara Langsung dari Kulit Acacia Mangium Wild dengan Aktivasi Fisika dan Aplikasinya sebagai Absorben, [Skripsi] Departemen Hasil Hutan, IPB Bogor, 2009.
- [17] Hartley, CWS, The Oil Palm (Elaeis guineensis Jacq), Third Ed 761p. Essex : Longman Scientific & Technical, 1988.
 [18] Puspitasari E, "Karakteristik Biopelet Campuran Cangkang
- [18] Puspitasari E, "Karakteristik Biopelet Campuran Cangkang Dan Pelepah Kelapa Sawit", Departemen Hasil Hutan - IPB Bogor, 2014.
- [19] Nur MS, "Karakteristik Kelapa Sawit sebagai Bahan Baku Bioenergi" Insan Fajar Mandiri Nusantara, 2014.
- [20] Grover, P.D. dan Mishra, S.K. "Biomass Briquetting : Technology and Practices", Field Document No. 46, FAO-Regional Wood Energy Development Program (RWEDP) In Asia, Bangkok, 1996.
- [21] Masturin, A, "Sifat Fisik dan Kimia Briket Arang Limbah Gergaji Kayu. [Skripsi] Fakultas Kehutanan, IPB Bogor 2002.
- [22] Kementerian Energi dan Sumber Daya Mineral Indonesia, "Peraturan Menteri Energi dan Sumber Daya Mineral tentang Perhitungan Harga Jual Eceran Bahan Bakar Minyak, No. 4 tahun 2015.
- [23] Widarti, *et al*, "Studi eksperimental Karakteristik Briket Organik dengan Bahan baku Dari PPLH Seloliman", Teknik Fisika ITS Surabaya, 2007.