$20153^{\text {rd }}$ International Conference on Adaptive and Intelligent Agroindustry (ICAIA)

ICAIA 2015

August $3^{\text {rid }} \cdot 4^{46}, 2015$
IPB International Convention Center
Bogor, Indonesia

ISBN : 978-1-4673-7404-0
IEEE Catalog Number : CFP15C67-CDR

- IEEE

INDONNESIA SECTION

- IEEE INDONESIA SECTION

Proceedings of

2015 3 $^{\text {rd }}$ International Conference on Adaptive and Intelligent Agroindustry (ICAIA)

IPB International Convention Center, Bogor, Indonesia

$$
\text { August } 3^{\text {rd }}-4^{\text {th }}, 2015
$$

Published by :

Department of Agroindustrial Technology
Bogor Agricultural University
Bogor, Indonesia

Welcome Message from The General Chairs of ICAIA 2015

On behalf of the organizing committee, it is our pleasure to welcome you to International Conference on Adaptive and Intelligent Agroindustry, Bogor, Indonesia. This is the 3rd conference on the topic that is held by the Department of Agroindustrial Technology, Bogor Agricultural University, Indonesia.

The conference is expected to provide excellent opportunity to meet experts, to exchange information, and to strengthen the collaboration among researchers, engineers, and scholars from academia, government, and industry. In addition, the conference committee invited five renowned keynote speakers, i.e. Prof Irawadi from Bogor Agricultural University; Prof Kenneth De Jong from George Mason University, USA; Dr Yandra Arkeman from Bogor Agricultural University; and Dr Guillermo Baigorria from University of Nebraska-Lincoln, USA.

The conference committee also invited Prof Noel Lindsay from University of Adelaide, Australia; Kiyotada Hayashi from National Agricultural Research Center-Tsukuba, Japan; Prof Margareth Gfrerer from Islamic State University of Jakarta, Indonesia; Dr Barry Elsey from University of Adelaide, Australia; Dr Gajendran Kandasamy from Melbourne University, Autralia; and Imperial College London-British, Prof Allan O'Connor from University of Adelaide, Australia; Dr Wisnu Ananta Kusuma from Bogor Agricultural University ,Indonesia; and Dr Frank Neumann from University of Adelaide, Australia, as invited speakers.

This conference was organized by Department of Agroindustrial Technology, Bogor Agricultural University and Asosiasi Agroindustri Indonesia, and technically sponsored by IEEE Indonesia Section. Furthermore, it was supported by Departement of Computer Science, Bogor Agricultural University; Surfactant amd Bionegergy Research Center; PT Bogor Life Science and Technology; Indonesian Ministry of Industry; PT Pachira Distrinusa; and PT Kelola Mina Laut.

I would like to take this opportunity to express my deep appreciation to the conference's committee members for their hard work and contribution throughout this conference. I would like to thank authors, reviewers, speakers, and session chairs for their support to participate in the Conference. Lastly, I would like to welcome you to join ICAIA 2015 and wish you all an enjoyable stay in Bogor.

Sincerely,
Dr Yandra Arkeman
General Chairs, ICAIA 2015

WELCOMING ADDRESS

Prof. Dr. Ir. Nastiti Siswi Indrasti
Head of Agroindustrial Technology Department
Faculty of Agricultural Engineering and Technology
Bogor Agricultural University
on
$3^{\text {rd }}$ International Conference on Adaptive and Intelligence Agroindustry ($3^{\text {rd }}$ ICAIA)

Bogor, August, 3 - 4, 2015
Assalamu'alaikum Warohmatullahi Wabarokatuh
In the name of Allah, the beneficent and the merciful,
Distinguish Guest, Ladies and Gentlemen
Let me first thank you all for accepting the invitation to participate in this $3^{\text {rd }}$ International Conference on Adaptive and Intelligence Agroindustry (ICAIA). In particular I would like to thank Rector of IPB (Institut Pertanian Bogor/Bogor Agricultural University) Prof. Herry Suhardiyanto for supporting this event as part of the series academic event in celebrating the $52^{\text {nd }}$ Anniversary of Bogor Agricultural University.

We are certainly proud to have been able to assemble this event in IPB, Bogor. The range of participants and audience at this conference is precisely something I would like to stress. Participants who followed the event more than 150 people, coming from various countries including the USA, Australia, Japan, Vietnam, Philippine, Germany and Indonesia. The main goal of the conference is to provide an effective forum for distinguished speakers, academicians, professional and practitioners coming from universities, research institutions, government agencies and industries to share or exchange their ideas, experience and recent progress in Adaptive and Intelligent Agroindustry.

The 2015 3rd International Conference on Adaptive and Intelligent Agro-industry (ICAIA) is the third forum for the presentation of new advances and research results on various topics in all aspects of innovative agro-industry that highlights the development and improvement for today and tomorrow's global need for food, energy, water and medicine. The aim of the conference is to stimulate interaction and cohesiveness among researchers in the vast areas of innovative agro-industry. Innovative Agro-industry has the ability to adapt intelligently to future global challenges, i.e. food, energy, water, and medical. Global challenges needs a new breed of Agroindustry which could produce innovative products to fulfill the needs through advanced processing technology, production systems and business strategy supported by cutting-edge information and communication technology.

The topic for this event is "Empowering Innovative Agroindustry for Natural Resources, Bioenergy and Food Sovereignty". The topics clustered into four main parts:
Track 1 : Innovative Agroindustrial and Business System Engineering

Track 2 : Frontier Approaches in Process and Bioprocess Engineering
Track 3 : Frontier Approaches in Industrial Environmental Engineering
Track 4: Intelligent Information and Communication Technology for Adaptive Agroindustry of the Future

This event also hosts four (4) workshops: (1) Strategies for Agroindustry Development (2) LCA for Agroindustry (3) Innovation and Technopreneurship for Agroindustry and (4) Agroindustry Informatics.

Distinguish Guest, Ladies and Gentlement,
Agroindustry transforms agricultural commodities into high value-added products. Agroindustry is industry that process agricultural products to increase their value added significantly by using technology and by considering environmental aspect and sustainability. However, with changing global demand and technology advancement, innovative agroindustry is needed in order to be competitive as well as sustainable. The challenge of future agroindustry is not merely efficiency and productivity anymore, but also the challenge to appropriately apply frontier technology as well as meeting future global demands.

Agroindustry needs to deal with the application of advance technologies and cope future global issues. Current global issues which arise and expected to exist in the future are food sovereignty, renewable energy, sustainable water management and pharmacy. The ability of agro-industry to respond the future global issues and the undoubtedly substantial increase in demand in future decades will be highly dependent on the increased application of existing technologies as well as the exploitation of new and innovative technologies.

The emergence of high technology could be applied in the agro-industry are: nanotechnology, biotechnology, bioinformatics, food processing, food packagingwaste, state-of-the-art computation and many others. The aforementioned hightechnology along with computation technology could greatly advance agroindustry from a traditional system into a smart-intelligent and innovative technology. Therefore, in the new millennia, adaptive-intelligent and innovative agro-industry will contribute to solutions to global problems and brings agriculture into perfection.

Hope this conference will also discuss this issue in more detail as it is an important matter for all of us. We should no more think just how to produce high value product but it is also necessarily important how to keep our live in good quality by understanding following old saying... "You do not live at once. You only die once and live every day".

I do not to take up any more of your time with these opening remarks. Let me simply thank you once again for sharing your thoughts with us. Here's wishing every success for the conference. May Allah bless all of us.

Thank you for your kind attention, Wassalamu’alaikum Warohmatullahi Wabarokatuh

COMMITTEE

Condescendent

Prof. Dr. Ir. Herry Suhardiyanto, M.Sc (IPB's Rector)

Steering Committee

Chairman

Prof. Dr. Ir. Nastiti Siswi Indrasti

Vice

Dr. Ir. Yandra Arkeman, M.Eng

Board member
Prof. Dr. Ir. Aziz Darwis
Prof. Dr. Ir. Irawadi Djamaran
Prof. Dr. Ir. Eriyatno, MSAE
Prof. Dr. Ir. Anas M. Fauzi
Prof. Dr. Ir. Syamsul Maarif, M.Eng
Prof. Dr. Ir. Machfud, MS
Prof. Dr. Ir. Djumali Mangunwidjaja

Organizing Committee

Chairman
Dr. Ir. Yandra Arkeman, M.Eng
Co-chairs:
Prof. Dr. Ir. Suprihatin
Prof. Dr. Ono Suparno, S.TP, MT

Treasury

Dr. Indah Yuliasih, S.TP, M.Si
Dr. Elisa Anggraeni, S.TP, MSc

Programs

Dr. Hartrisari Hardjomidjojo, DEA
Dr. Endang Warsiki
Ir. Lien Herlina, MSc
Dr. Ika Amalia Kartika

Funding

Dr. Meika Syahbana Rusli
Dr. Dwi Setyaningsih
Prof. Erliza Hambali
Dr. Mulyorini Rahayuningsih

Secretariat

Dr. Titi Candra Sunarti
Dr. Prayoga Suryadharma
Dr. Sugiarto, MS
Dr. Faqih Uddin
Niken Ayu Permatasari, STP, MSi
Angga Yuhistira, STP, MSi
Luthfa Jamilah, STP
Yulianti
Elvin Septiana

Paper \& Proceedings

Prof. M. Romli
Prof. Marimin
Prof. Ani Suryani
Prof. Erliza Noor
Dr. Liesbetini Hartoto
Dr. Moch Yani

Accomodation dan Logistics

Dr. Andes Ismayana
Dr. Ade Iskandar
Dr. Muslich
Dr. Sapta Raharja

Design, Web and Publication

Dr. Taufik Djatna
Dr. Aji Hermawan
M. Arif Darmawan, MT

Teguh Adi Setia, AMd

AGENDA

Time	Activities
Monday, August $3^{\text {rd }} 2015$	
08.00-09.00	Registration
09.00-10.00	Opening Ceremony - Welcoming Address: Prof. Nastiti Siswi Indrasti (Head of DAT, Fateta, IPB) - Welcoming Speech Head of Bogor Regency - Conference Opening: Prof. Herry Suhardiyanto (Rector of IPB) - Opening Speech and Conference Opening : Minister of Industry Indonesia * - Launching Expose International program DAT
$10.00-10.05$	Photo Session
10.05-10.15	Coffee break
10.15-10.45	Keynote Speech :
	1. Prof Irawadi (Bogor Agricultural University, Indonesia)
	2. Prof. Kenneth De Jong (George Mason University, USA)
10.45-11.30	3. Dr. Yandra Arkeman (Bogor Agricultural University, Indonesia)
11.30-12.00	4. Dr. Guillermo Baigorria (University of Nebraska, Lincoln, USA)
$12.00-12.30$	
$12.30-13.30$	Lunch break
	Plenary Session 1 :
13.30-13.50	Prof. Noel Lindsay (University of Adelaide, Australia)
13.50-14.10	Dr. Kiyotada Hayashi (National Agricultural Research Center, Tsukuba, Japan)
14.10-14.30	Prof. Margareth Gfrerer (Islamic State University of Jakarta, Indonesia)
14.30-14.50	Dr. Barry Elsey (University of Adelaide, Australia)
14.50-15.10	Ir. M. Novi Saputra (Marketing Director KML Food Group)
15.10-15.45	Discussion
15.30-15.45	Coffee break
15.45-18.00	Parallel session A, B and C
18.00-21.00	Welcome Dinner

Time	Activities
Tuesday, August $4^{\text {rd }} 2015$	
08.30-09.00	Registration
	Plenary Session 2 :
09.00-09.20	Dr. Gajendran Kandasamy (PhD in Physic, Melbourne
	University ; PhD in Innovation Imperial Collage, London)
09.20-09.40	Prof. Allan O'Connor (University of Adelaide, Australia)
09.40-10.00	Dr. Eng. Wisnu Ananta Kusuma, ST, MT (Bogor Agricultural University, Indonesia)
10.00-10.20	Dr. Frank Neumann (University of Adelaide, Australia)
10.20-10.45	Discussion
10.45-13.00	Parallel Session A, B and C
13.00-14.00	Lunch break
14.00-15.30	Parallel Workshop - Strategies for Agroindustry Development - LCA for Agroindustry - Innovation and Technopreneurship for Agroindustry - Agroindustrial Informatics
15.30-15.45	Coffee Break
15.45-16.15	Closing remark

TABLE OF CONTENTS

Welcoming address from general chairs i
Welcoming address from head of Agroindustrial Technology Departement ii
Bogor Agricultural University
Committee iv
Agenda v
Table of Content vii
Abstract of Invited Speakers
Noel Lindsay 1
Kiyotada Hayashi 2
Barry Elsey 3
Frank Neumann 4
Yandra Arkeman 5
Wisnu Ananta Kusuma 6
Innovative Agroindustrial and Business System Engineering
The Feasibility Study of Establishment of Biodiesel And Paving Block 7
Industry From Spent Bleaching Earth
Febriani Purba, Ani Suryani and Sukardi
Green Supply Chain Management Innovation Diffusion in Crumb Rubber 13
Factories: Designing Strategies towards ImplementationTri Susanto, Marimin Marimin and Suprihatin
Mobile Business Analytics System for Service Level Analysis of Customer 19Relationship DecisionTaufik Djatna and Yudhistira Chandra Bayu
Exploring an Innovative Approach to Address Non-Tariff Barriers 26Experienced by Small to Medium Enterprises in Downstream CoffeeProduction in IndonesiaAndar Hermawan, Yandra Arkeman, Titi Candra Sunarti
Innovation on Guardrail Press Tool with Simple Technology for Highway 33
Road Business
Bambang Suhardi Waluyo and M.Syamsul Ma'Arif
An Analysis of Innovation Network Performance on the Palm Oil Industry 34in North SumateraDanang Krisna Yudha, Aji Hermawan and Machfud
Application of Nanotechnology to Improve Physical Properties of Red Fruit 41
Emulsion in order to Increase Its Industrial Use
Murti Ningrum and Syamsul Maarif
Exploring the Internationalization Process Model of an Indonesian Product 47

- Case study : Fruit Chips SME'sDickie Sulistya Apriliyanto, Hartrisari Hardjomidjojo, Titi C Sunarti
Innovation Management in Indonesian Palm Oil Industry 53
Karim Abdullah, Aji Hermawan and Yandra Arkeman
Innovation Design Process for Gayo’s Coffee Quality Improvement 59Rahmat Pramulya, M Syamsul Ma'Arif and Tajuddin BantacutTechnology Innovation Adoption to Improve the Performance of Dairy67
Small-Medium Enterprises (SME): Case study in Pangalengan-BandungRegency, West Java, IndonesiaNuni Novitasari, Titi Candra Sunarti and Nastiti Siwi Indrasti
Process Innovation for Producing Bioethanol from Oil Palm Empty Fruit 76
Bunches by Improving Fermentation ConditionsFitriani Kasim, Novizar Nazir and Syamsul Ma'Arif
Managing Innovation through Knowledge Sharing in An Indonesia Coconut 82
SME
Muchammad Kodiyat P, Machfud, Nastiti S Indrasti
Increasing Added Value of Banana by Producing Synbiotic Banana "Sale" 88
Using Innovation \& Technology Strategy ApproachEka Ruriani
Innovation Palm Fronds Briquettes Through Noncarbonization Process 93
Petir Papilo, Syamsul Ma'Arif and Yandra Arkeman
Graphic Design Innovation As Brand Identity For "Mahlzeit N 'Das Brot " 100
Bread Packaging
Zulkarnain, Deny Dwi Lestari and M. Syamsul Ma'Arif
An AHP Application for Selecting A Business Innovation Strategy of 104
Chocolate SMEs in East JavaYani Kartika Pertiwi, M. Syamsul Maarif and Machfud
Understanding local food consumers and their motivations: A case study in 110
Padang city
Poppy Arsil
Spatial Model Design for Competitive Improvement of Small Medium 116
Scales Enterprises (Case Study: Bogor City)Hartrisari Hardjomidjojo, Harry Imantho and Armaiki Yusmur
System Analysis and Design for Selecting Chitin and Chitosan Industry 121
Location by Using Comparative Performance Index (CPI) Method
Dena Sismaraini, Nastiti S. Indrasti and Taufik Djatna
Arduino-Based Temperature Monitoring Device for Cold Chain 129
Transportation
Delmar Zakaria Firdaus and Endang Warsiki
Development of Downstream Cocoa Industry: Exploring the Role of 134
Government and Small and Medium Industry in Partnership
Farda Eka Kusumawardana, Yandra Arkeman, Titi C Sunarti
The Role of Communication in the Technology Transfer (A Case Study at 140
the Center for Agro-based Industry)
Anindita Dibyono, Sukardi, Machfud
The Center for Pulp and Paper Appraising its Productivity in Generating 147
Industry-Applicable Research: A Best Practice IllustrationAhmad Rudh Firdausi, Anas M Fauzi, Machfud
Frontier Approaches in Process and Bioprocess Engineering Identification of Flavor Compounds In Cemcem (Spondiazpinata (L.F) 156
Kurz) Leaf Extra
Luh Putu Wrasiati, Ni Made Wartini and Ni Putu Eny SulistyadewiSynthesis and Characterization of Nanosilica from Boiler Ash with Co-160Precipitation MethodWahyu Kamal Setiawan, NastitiSiswiIndrasti and Suprihatin
The Comparison Of Media on the Microalgae Nannochloropsis sp. Culture 165Anak Agung Made Dewi Anggreni, I Wayan Arnata and I B WayanGunam
Identification of Media and Indicator Liquid as A Recorder Smart Label 169Endang Warsiki and Riris Octaviasari
The Effect of Consentration of Mes Surfactant From Palm Oil and 174
Consentrasion of Inorganic Salt to Interfacial Tension ValueRista Fitria, Ani Suryani, Mira Rivai and Ari ImamEffect of Nano Zinc Oxide On Bionanocomposite180
Siti Agustina, Nastiti Siswi Indrasti, Suprihatin and Nurul TaufiquRohman
The Effects of Molar Ratio Between 80\% Glycerol And Palm Oil Oleic 186
Acid on the Synthesis Process of Ester GlycerolMira Rivai, Erliza Hambali, Giovanni Nurpratiwi Putri, Ani Suryani,Pudji Permadi, Bonar T.H Marbun and Ari Imam Sutanto
Selecting Part of Natural Fiber EFB which has Best Mechanical Strength 192
through Tensile Test Analysis for Composite Reinforced MaterialFarkhan, Yohanes Aris Purwanto, Erliza Hambali and WawanHermawan
Effect Of Ethyl Methane Sulfonate (EMS) On Growth Rate, Cell Size, Fatty 199
Acid Content And Antioxidant Activities Of Dunaliella sp.Mujizat Kawaroe and Amelia Gustini
Identification of phenol red as Staphylococcus aureus indicator label 206
Dunaliella sp.
Melati Pratama, Endang Warsiki and Liesbetini Hartoto
Enhancing Ethanol Tolerant of Escherichia coli Recombinant by Glutamate 211
Addition under Aerobic Conditions
Indra Kurniawan Saputra, Prayoga Suryadarma and Ari PermanaPutra
In Vitro Potentifal of Antibacterial Marine Microalgae Extract 216Chaetocerosgracilis Toward Staphylococcus epidermidis BacteriaArdhi Novrialdi Ginting, Liesbetini Haditjaroko and IrianiSetyaningsih
The Potential Applications of Modified Nagara Bean Flour through 221
Fermentation for Innovation of High Protein Analog Rice
Susi, Lya Agustina and Chondro Wibowo
Studies on the Characteristics of Pasayu (Pasta of Waste-Cassava) 226Fortification as a New Product DevelopmentMarleen Sunyoto, Roni Kastaman, Tati Nurmala and Dedi Muhtadi
Optical And Particle Size Properties Of Sargassum Sp Chlorophyll As Dye- 234
Sensitized Solar Cell (DSSC)Makkulawu Andi Ridwan and Erliza Noor
Alkaline Pre-Treatment of Gelidium latifolium and Caulerpa racemosa for 239Bioethanol Production

Dwi Setyaningsih, Neli Muna, Elisabeth Yan Vivi Aryanti and Anastasya Hidayat
New Trends in Industrial Environmental Engineering \& Management
Formulating a Long Term Strategy for Sustainable Palm Oil Biodiesel247
Development In Indonesia: Learning From the Stakeholder PerspectiveBeny Adi Purwanto, Erliza Hambali and Yandra Arkeman
Quality Improvement of Polluted River Water Used as Raw Water in Clean 253
Water Supply by Using Biofiltration
Suprihatin, Muhammad Romli and Mohamad Yani
An Empirical Investigation of the Barriers to Green Practices in Yogyakarta 260
Leather Tanning SMEs
Dwi Ningsih, Ono Suparno, Suprihatin and Noel LindsayPreliminary Study For CO_{2} Monitoring System267Farhan Syakir, Rindra Wiska, Irvi Firqotul Aini, Wisnu Jatmiko andAri Wibisono
Designing a Collaboration Form to Overcome Innovation Resistance in 273
Waste Management Practices in Lampung Tapioca Industry
Nur Aini Adinda, Suprihatin, Nastiti Siswi Indrasti
Pollution Reducing Opportunities for a Natural Rubber Processing Industry: 280
A Case StudySyarifa Arum Kusumastuti, Suprihatin and Nastiti Siswi IndrastiCreating the Standard for Specific Energy Consumption at Palm Oil286
IndustryAlfa Firdaus and M Syamsul Ma'Arif
Effects of Palm-Dea Non-Ionic Surfactant as an Additive in Buprofezin 290
Insecticide on the Efficacy of it in Controlling Brown Planthopper Rice PestFifin Nisya, Rahmini, Mira Rivai, Nobel Cristian Siregar, Ari ImamSutanto and Ainun Nurkania
Intelligent Information \& Communication Technology for Adaptive Agroindustry of the Future
Design of Web-Based Information System With Green House Gas Analysis 294
for Palm Oil Biodiesel AgroindustryYandra Arkeman, Hafizd Adityo Utomo and Dhani S. WibawaSequential Patterns for Hotspots Occurence Based Weather Data using301
Clospan algorithmTria Agustina and Imas S. Sitanggang
How to Deal with Diversity in Cultivation Practices using Scenario 306
Generation Techniques: Lessons from the Asian rice LCI InitiativeKiyotada Hayashi, Yandra Arkeman, Elmer Bautista, Marlia MohdHanafiah, Jong Sik Lee, Masanori Saito, Dhani Satria, KoichiShobatake, Suprihatin, Tien Tran Minh and Van Vu
Development of Life Cycle Inventories for Palm Oil in North Sumatra: 309
Modelling Site-Specific Activities and ConditionsVita D Lelyana, Erwinsyah and Kiyotada Hayashi
Sequential Pattern Mining on Hotspot Data using PrefixSpan Algorithm 313
Nida Zakiya Nurulhaq and Imas S. SitanggangAn Intelligent Optimization Model Analysis and Design of Bio-filtration in317Raw Water Quality ImprovementRamiza Lauda and Taufik Djatna
Development Of People Food Consumtion Patterns Information System 323
Based On Webmobile Application.Fadly Maulana Shiddieq, Roni Kastaman and Irfan Ardiansah
Association Rules Mining on Forest Fires Data using FP-Growth and 330
ECLAT Algorithm
Nuke Arincy and Imas S. Sitanggang
Development Of Expert System For Selecting Tomato (Solanum 334Lycopersicon) VarietiesErlin Cahya Rizki Amanda, Kudang Boro Seminar, Muhamad Syukurand Noguchi Ryozo
Developing Life Cycle Inventories for Rice Production Systems in 340
Philippines: How to Establish Site-specific Data within the GeneralFramework
Elmer Bautista, Kiyotada Hayashi and Masanori Saito
Construction of Site-specific Life Cycle Inventories for Rice Production 343
Systems in Vietnam
Tran Minh Tien, Bui Hai An, Vu ThiKhanh Van and KiyotadaHayashi
Study on Life Cycle Benefit Assessment as a tool for promoting the solution 346
of Environmental Problems
Tetsuo Nishi
Real Time Monitoring Glycerol Esterification Process with Mid IR Sensors 350
using Support Vector Machine ClassificationIwan Aang Soenandi, Taufik Djatna, Irzaman Husein and Ani Suryani
Extraction of Multi-Dimensional Research Knowledge Model from 356
Scientific Articles for Technology Monitoring
Arif R. Hakim and Taufik Djatna
Performance of Artificial Lighting Using Genetics Algorithms 362Limbran Sampebatu
The Application of Fuzzy-Neuro Approach for ERP System Selection: Case 367
Study on an Agro-industrial Enterprise
Joko Ratono, Kudang Boro Seminar, Yandra Arkeman and Arif ImamSuroso

Synthesis and characterization of nanosilica from boiler ash with co-precipitation method

Wahyu K. Setiawan, Nastiti S. Indrasti, and Suprihatin
Laboratory of Environmental Engineering and Management
Faculty of Agricultural and Engineering Technology,Bogor Agricultural University
E-mail: wks.f351124051@gmail.com;nastiti.indrasti@gmail.com; suprihatin.indo.net

Abstract

Boiler ash known as solid waste of sugar industry with high silicon dioxide. Nanosilica can be synthesized from boiler ash with coprecipitation method. Precipitation still produced amorphous and heterogenous nanoparticles because of reaction spontanity. Modification using polysaccharides as dispersing agent improved its ability to synthesize homogenous silica nanoparticles. This study aimed to synthesize and characterize nanosilica from boiler ash with coprecipitation method. Polysaccharides that were used on this research include rice flour and agar powder with concentration $25 \%(w / w)$ silica. The characteristics of nanosilica were observed by particle size distribution, crystallinity, crystal size and morphology. Based on analysis, the use of polysaccharides as dispersing agent on precipitation method altered characterististics of nanosilica. Agar powder and rice flour reduced particle size and polydispersity index, turned crystallinity and crystal size, and formed unique particle morphology. The best characteristic of nanosilica was resulted by coprecipitation method using rice flour. It had average particle size 185.25 nm , polydispersity index 0.26, crystallinity $\mathbf{2 8 . 7 6 \%}$, average crystal size 22.44 nm .

I. INTRODUCTION

Boiler ash is a form of solid waste generated by the production activity of sugar industry. It is the result of chemical changes of pure bagasse burning at temperatures of $550-600^{\circ} \mathrm{C}$ for $4-8$ hours. A large-

[^0]scale sugar industry can produce $1.5-2.0 \%$ of the total sugarcane milled or about 1.7 to 2.3 million tons per year. Boiler ash has been utilized as the additional material for organic fertilizer, the fill of damaged roads and landslides [1]. Boiler ash is categorized as fly ash type F indicating that the boiler ash has a chemical composition of $\mathrm{SiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ more than 70% and CaO less than 8%. It is this composition that makes boiler ash potential to be synthesized into silica. The synthesis of silica into nanosilica is carried out to expand the surface so that the reactivity increases.

The prevalent method of nanosilica synthesis is chemical precipitation, since it is excellent in the energy use efficiency and processing time. However, the use of precipitation method has not produced homogeneous nanosilica particles and a low degree of crystallinity [1]-[5]. An effort can be made to produce nanosilica particles with uniform size distribution is by the addition of a dispersing agent.In synthesis of nanosized oxide-based materials, polysaccharide played multiple roles, namely coating/capping, functionalizing, stabilizing, poring and or cordinating agent [6].Polysaccharide is a type of dispersing agent which is abundantly available and the residue management is relatively simple. The polysaccharides could be used in this study are rice and agar. Rice was one of agricultural comodities which could be used as non-metalic bio-precuesors to synthesize functional materials. Amylose and amylopectin of rice were representing the key structural elements for the synthesis of new functional nanomaterials [6]. Previously, rice used to synthesize zinc oxide nanoparticles [6]. Agarwas a natural, biocompatible and biodegradable carbohydrate derived from marine algae. Agar was composed of agarose and agaropectin. Agarose was preferred due to that it was porous, cheap, and environmental friendly. It has been used to prepare alumina nanoparticle [7] and the result was relatively good. The polysaccharide concentration used in the synthesis process will greatly affectedin its ability to control the particle sizes. Based on the research conducted by [8] for some types of polysaccharide-based dispersing agents, the polysaccharide concentration used was 25\% (w/w).

II. MATERIALS AND METHODS

A. Materials

Boiler ash (BA) was obtained from PT Gunung Madu Plantation Lampung. BA from sugar factory cleaned by distilled water and burnt at $700^{\circ} \mathrm{C}$ for 7 hours. Sodium hydroxide (reagent grade), sulphuric acid and ammonium hydroxide (analytical grade) were purchased from Merck. Rice flour (RF) and agar powder (AP) was purchased from local market in Dramaga Bogor.

B. Synthesis of pure nanosilica from boiler ash

Ten grams BA on 80 ml 2.5 N sodium hydroxide solution was boiled in covered 250 ml erlenmeyer flask for 3 hours. The solution was filtered by whatman paper and the residues were washed with 20 ml boiling water. Then, the filtrate was allowed to cool down to room temperature and titrated 5 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ until reached pH 2 . Afterward, it was titrated again with $\mathrm{NH}_{4} \mathrm{OH}$ until pH 7 . Sol aged for 3.5 hours at room temperature then it was dried at $105^{\circ} \mathrm{C}$ for 12 hours [1][2][4].

C. Synthesis of nanosilica

Pure silica was refluxed on HCl 3 N for 6 hours. Thereafter, it was cleaned repeately with distilled water to free the acid. After that, it was dissolved on 2.5 N NOH by constant stirring on magnetic stirrer for 4 hours. Rice flour or agar powder 25\% (w/w silica) was added into the solution after one hour. Then, 5 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ was titrated into solution to adjust $\mathrm{pH} 7.0-8.5$. The precipitated silica was cleaned repeately with warm water to free the alkaly. At the end, it was dried in the oven $60^{\circ} \mathrm{C} 3$ hours and burned at $700^{\circ} \mathrm{C}$ for 4 hours to calcinate the polysaccharides.

III. CHARACTERIZATION

Particle size distribution of nanosilica was observed by Vasco Particle Size Analyzer. Exactly 0.1 grams nanosilica powder was dispersed into distilled water Then, iIt was stirred on magnetic stirrer for 10 minutes and sonicated for 1 minute. Nanosilica particles were scanned by PSA for 2-5 minutes.

The diffraction pattern, crystallinity, size and phase of crystal was observed by Shimadzu XRD-7000 Maxima X with $\mathrm{Cu}-\mathrm{Ka}$ radiation, voltage 40 kV , impendance 30 mA , and $\lambda=1.54 \AA$. Diffractograms was scanned at $10-60^{\circ}$ with scanning rate $2^{\circ} /$ minute on room temperature. Crystallinity of nanosilica was calculated by XRD-7000 software while crystal size of nanosilica was calculated by Scherrer Formula.

IV. RESULT AND DISCUSSION

A. Transformation of boiler ash became nanosilica

Boiler ash (BA) in this study was burned at $700^{\circ} \mathrm{C}$ for 7 hours in order to eliminate trash materials and change the crystallinity. Fresh BA was composed of 82.76\% silicon dioxide and other compounds. Silicon dioxide compound increased after burning process became 99.00%. The crystallinity also increased from 50.26% became 97.56%.

The silica was extracted by sodium hydroxide with hydrolisis process at $90-100^{\circ} \mathrm{C}$ for 3 hours to form natrium silicate. Natrium silicate and silicon dioxide was obtained via the following reactions:

$$
\begin{gathered}
\mathrm{SiO}_{2}+\mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SiO}_{3}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{Na}_{2} \mathrm{SiO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SiO}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Natrium silicate was precipitated by sulphuric acid to reach stability of silica sol. The sol of silica reach stability at pH 8.5 and aging time 3.5 hours at $60^{\circ} \mathrm{C}$.

Synthesis of nanosilica was done by extraction process with high concentration of hydrochloric acid. The particle size of silica would be reduced in this process. The smaller particle was precipitated again with same reaction. The second precipitation process resulted the sol with smaller droplet size.

B. Particle size distribution of nanosilica

The use of synthesis method affected homogeneity of nanosilica particle sizes. Fig. $l(a-c)$ shows a shift in the value of particle size distribution. The average size and polydispersity of nanosilica particles decreased, regardless of the methods start from precipitation, coprecipitation AP, until co-precipitation RF. The curve width lessened with the use of polysaccharide in the precipitation process which showed the decline in the size range and dispersity of particles in the dispersion media.

Nanosilica as the result of precipitation had a maximum size of 9774.96 nm and the minimum 28.19 nm . The range of nanosilica particle sizes shifted and became narrower when agar was used as a dispersing agent with the largest particle size of 4676.59 nm and the smallest 23.45 nm . The size distribution curve shifted, becoming narrower when rice was used as a dispersing agent with the largest particle size of 1288.58 nm and the smallest 29.52 nm .

The precipitation could synthesize nanosilica with an average particle size of 269.42 nm , with a polydispersity index of 0.9190 . The high index value of polydispersity indicated that the nanosilica particles produced by precipitation technique had a deficient particle size distribution. Extraction with hydrochloric acid was able to reduce the size of nanosilica but had not been able to prevent the agglomeration of particles spontaneously[1].

Fig. 1. Particles size distribution of nanosilica with different synthesis method (a) precipitation (b)co-precipitation RF (c)coprecipitation AP.

The use of polysaccharides in the precipitation process was able to synthesize nanosilica particle size distribution better than the synthesis result with ordinary precipitation. Rice flour as a dispersing agent in the precipitation process produced nanosilica particles with an average size of 185.45 nm , with a polydispersity index of 0.2540 . Rice has starch granules consist of amylose molecules and amilopectin. In nanosilica synthesis, the carbon matrix have a helix shape in amylose and have a role in providing the morphological form and the uniformity of nanoparticle sizes.The hydroxyl groups ofamylopectin could be involved both in intraand/orintermolecular supramolecular association. It had ability to coordinate transition metal ions, maintaining the nanoparticles highly aggregated [6].

RF on this research was obtained from high amylose rice, so that in nanosilica synthesis, amylose had more ability to control shape and size of particle.

As a result, the average size of synthesized nanosilica with co-precipitation AP was 252.22 nm , with a polydispersity index of 0.6520 . The outcome of nanosilica formed still did not have a good size distribution. Resemble with rice, agar has granules which is consist of agarose and agaropectin. The high aggregation of nanosilica particle suspected due to the presence of high agarose relatively in the agar which was used as a dispersing agent. Agaropectin has the ability to associate into intra- or inter-molecules as a balancing agent Si^{2+} ion transition and maintaining a high aggregation between silica particles.

C. XRD analysis of nanosilica

The diffractograms in Fig.2illustrates the nanosilica diffraction pattern as a result of precipitation which had a value of 2θ with high intensity at $32.03^{\circ}, 33.90^{\circ}$, 19.06°, and 28.07°. The highest intensity was at 32.03° which indicated the phase of cristobalite crystal [1]. Points $2 \theta 19.06^{\circ}$ and 28.07° showed the presence of tridymite phase while the peak point $\left(33.90^{\circ}\right)$ indicated the presence of mullite phase. Domination of cristobalite phase showed that precipitated silica nanoparticles had good thermal stability. Cristobalite known as crystal phase of silica which was formed at $700-800{ }^{\circ} \mathrm{C}$.

The precipitated silica nanoparticles with agar powder as the dispersing agent, had a diffraction pattern similar to precipitated nanosilica with higher intensity. The peak point with the highest intensity was found at $31.99^{\circ}, 33.86^{\circ}$, 19.01°, and 28.04°. Based on Fig. 2c, there was not the peak point of agar. It indicates that agar was eliminated by calcination process at $700^{\circ} \mathrm{C}$.

Meanwhile, nanosilica as a result of a synthesis with rice as the dispersing agent had the strongest peak at an angle of $2 \theta 22-23^{\circ}$ which indicated an amorphous silica phase. Amorphous silica phase could be opal-A, opal CT or opal C. Crystalline phase was showed by the strong peak at 31.58° (cristobalite), 19.16° (trydimite) and 33.97° (mullite).

The degree of crystallinity indicated the proportion of the crystal phase which existed in the material. The nanosilica synthesis using the precipitation method produced particles with a crystallinity of 33.22% with a dominant silica cristobalite phase. The rice flour used as the dispersing agent was able to reduce the crystallinity of the particles up to 28.76%. Meanwhile, the agar flour was able to increase the crystallinity of the particles up to 59.53%. This crystallinity change was related to the composition of amylose in rice and agarose agar since both of the major compounds forming crystallinity.

Fig. 2. Diffraction pattern of nanosilica with different synthesis method (a) precipitation (b)co-precipitation RF (c)coprecipitation AP.

In aqueous solution, rice granules swelled and their semi-crystalline structure was lost as smaller amylose molecule. The small amylose molecules could form a complex with Si^{2+} because of their high number of functional groups. Silicon ions and starch molecule would be asssociated then nucleation and initial crystal growth occured within regions of their high concentration. Van der Waals interaction between the surface molecules formed the driving force for self assembly. Then, SiO_{2} nanocrystals can be assembled to reach larger size [6]. Similar to rice, agar granules also swelled in aqueous solution and formed larger agarose molecules. Agarose had same role with amylose, could be associated with silicon ions to form the nanocrystalline silicon dioxide.

Despite its fairly low degree of crystallinity, the crystal formed from the synthesis process had a relatively small size (Table1). The crystal size was obtained by calculating the average size of the crystals with high intensity. It was given by Scherrer formula [7].

$$
\mathrm{D}=\frac{\mathrm{k} \lambda}{\beta \cos \theta}
$$

where D crystallite size (nm), k Scherrer constant (0.9), λ wavelenght of $\mathrm{Cu}(0.154 \mathrm{~nm}), \beta$ full width at half maximum (FWHM), θ diffraction angle (deg).

The highest crystal size was obtained from nanosilica precipitation with an average crystal size of 27.17 nm , followed by agar nanosilica co-precipitation 26.80 nm and rice co-precipitation 22.44 nm . The third sample of nanosilica crystal size was smaller than the size of silica 91.53 nm . In general, the three methods of nanosilica synthesis were able to reduce the silica crystal size up to $70-75 \%$. Acid hydrolisis on this process broke structure of silica crystal.

TABLE I
THE CRYSTAL SIZE OF NANOSILICA WITH DIFFERENT SYNTHESIS METHOD

Nanosilica									Crystal phase
Precipitation			Co-precipitation RF			Co-precipitation AP			
2θ (deg)	D(nm)	β (rad)	2θ (deg)	D(nm)	β (rad)	2θ (deg)	D(nm)	β (rad)	
19.06	26.28	0.0053	19.16	10.81	0.0126	19.01	27.05	0.0050	trydimite
22.65	25.05	0.0056	20.06	7.49	0.0181	22.60	18.63	0.0073	quartz
28.07	30.00	0.0047	28.01	30.42	0.0045	28.04	36.45	0.0038	seifertite
29.02	28.99	0.0049	29.16	66.07	0.0021	28.98	38.85	0.0036	cristobalite
32.03	18.87	0.0079	31,85	12.28	0.0113	31.99	17.46	0.0080	cristobalite
33.90	28.33	0.0051	33.97	21.11	0.0066	33.86	29.06	0.0048	cristobalite

Despite of crystal properties, XRD analysis could be used to analyze chemical composition of silica nanoparticles. It would be very important to assure purity of silica. Qualitative analysis of XRD on silica nanoparticles showed that SiO_{2} had high percentage $90-99 \%$ while another metal oxide had $1-10 \%$ in percentage. Functional group of silica by infra red spectra not to be expressed because the main characteristics of silica nanoparticle more enough.

Silica nanoparticle which produced by coprecipitation RF had better properties if it to be applied for electrolyte membrane additive. Based on FTIR analysis [9], the band at $1072 \mathrm{~cm}^{-1}$ illustrated the presence of Si-O-Si, the band at $902 \mathrm{~cm}^{-1}$ for Si-O-H. Amorphous silica is known to have the ability as a semiconductor material due to its mechanical resistance, electricity, and good selectivity of chemical modification.

V. ACKNOWLEDGMENT

The author would like to thank DGHE, Ministry of Research, Technology and Higher Education for research grant supporting this study. For instrument, gratitute to be expressed to Head of Material Analysis Laboratory, Physic Department, Bogor Agricultural University; and Material Analysis Laboratory, Center of Forest Research and Development, Forestry Department, Gunung Batu Bogor.

VI. CONCLUSION

Nanosilica can be synthesized from the boiler ash of sugar industry using both precipitation method and coprecipitation method. Modification of the precipitation process with agar powder and rice flour as a dispersing agent proved able to reduce the particle sizes, increase the particle size distribution, lower the crystal size, and change the crystallinity of nanosilica. The rice flour used in the precipitation produced nanosilica with the best characteristic, that is, with a particle size of 185.45 nm , polydispersity index of 0.2540 , crystal size of 22.44 nm .

REFERENCES

[1] A. Ismayana, "Design of Co-composting process and nanotechnology for handling of solid waste of sugar industry," Ph.D. dissertation, Dept. Agroindustrial Tech., Bogor Agr. Univ., Indonesia, 2014.
[2] N. Thuadaij and A. Nuntiya, "Preparation of nanosilica powder from rice husk ash by precipitation method," Chiang Mai J. Sci., vol. 35, no. 1, pp. 206-211, 2008.
[3] S. Music, N. Filipovic-Vincenkovic, and L. Sekovanic, "Precipitation of amorphous SiO 2 particles and their properties," Brazilian Journal of Chemical Engineering, vol. 28, no. 1, pp. 89-94, 2011.
[4] V. Hariharan and G. Sivakumar, "Studies on synthesized nanosilica obtained from bagasse ash," International Journal of ChemTech Research, vol. 5, no. 3, pp. 1263-1266, 2013.
[5] V.H. Le, C. N. H. Thuc, and H. Thuc, "Synthesis of silica nanoparticles from Vietnamese rice husk by solgel method," Nanoscale Research Letters, vol. 8, no. 58, pp.1-10, 2013.
[6] D. Ramimogadham, M. Z. B. Hussein, Y. H. TaufiqYap, "Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate," Chemistry Central Journal, vol. 7, no. 136, pp. 1-10, 2013.
[7] M. A. Nawawi, M. S. Mastuli, N. H. A. Halim, and N. A. Z. Abidin, "Synthesis of alumina nanoparticles using agarose template," IJEIT, vol. 3, issue 1, pp. $337-$ 340, July 2013.
[8] M. Nidhin, R. Indumathy, K. J. Sheeram, and B. U. Nair, "Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide template," Bul mater Sci., vol. 31, no. 1, pp. 93-96, 2008.
[9] W. K. Setiawan, "Preparation of nanosilica from boiler ash with co-precipitation method as additive for electrolyte membrane based chitosan," M.Si. thesis,

Dept. Agroindustrial Tech., Bogor Agr. Univ., Indonesia, 2015

[^0]: Manuscript received April29, 2015. This work was supported in part by the Department of Agroindustrial Technologywith research grant (161a/IT3.6.3/km/2014).

 Wahyu K. Setiawan, STP, M.Si currently finish his study in Magister Program, Department of Agroindustrial Tecnology, Bogor Agricultural University (email: wks.f351124051@gmail.com).

 Dr. Ir. Nastiti Siswi Indrasti is currently working as Professor and Head, Department of Agroindustrial Technology, Bogor Agricultural University(corresponding author to provide e-mail: nastiti.indrasti@ gmail.com).

 Dr. Ir. Suprihatinis currently working as Professor and Head, Laboratory of Environmental Engineering and Management, Department of Agroindustrial Technology, Bogor Agricultural University(email: suprihatin@indo.net).

