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Abstract

We consider a SEIR model with varying total population size, We find
the analytical sclution of the proposed modei by homotopy
perturbation method which is one of the best methods for finding the
sofution of the nonlincar problem, By using this method, we solve the
preblem analytically and then compare the numerical result with other
standard methods. We alse justify the numerical simulation and their
results, The comparison reveals that our approximate solutions are in
very good agreement with those by numerical methed. Moreover, the
resulis show that the proposed method is a more reliable, efficient and
convenient one for solving the nonlinear differential equations.

1. Introduction

Mathematical modelling has become important tools in analyzing the
spread and control of infectious diseases. The mode! helps us to understand
different factors such as the transmission and recovery rates and to predict
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: how the discases will spread over a period of time [1]. In recent years, many

‘attempts have been made to develop realistic mathematical models for

" investigating the transmission dynamic of infectious diseases, One of them is

“a ‘model of epidemic which is usually given as a system of differential
cquations. To understand the behavior of epidemic model, we need to know
the analysis of steady state and their stability [8]. Studics of epidemic models
that incorporate disease caused death and varying total population have
become onc of the important arcas in the mathematical theory of
cpidemiology. Most of the research literatures on these types of models
assume that the discase incubation is negligible so that once infected, cach
susceptible individual instantancously becomes infected and later recovered
with a permanent or temporary acquired immunity. A compartmental model
bascd on these assumptions is customarily called a SIR model. Models that
are more general than the SIR types need Lo be studied to investigale the role
of incubation in disease transmission [ 10]. Using a compartmental approach,
onc may assume that a susceptible individual first goes through a latent
period afier infection before becoming infected. The resulting models are of
SEIR types depending on whether the acquired immunity is permanent or
otherwise. In this article, the SEIR mode! with varying total population size
will be discussed and this model is in the form of nonlinear.

- We know that cxcept a limited number of these problems, most of them
'do’not have analytical solution. Therefore, these nonlinear equations should
‘rbc‘solvcd using other methods. Some of them are solved using numerical
techniques. In the numerical method, stability and convergence should be
considered so as to avoid divergence or inappropriate result. In the analytical
perturbation method, we should cxert the small parameter in the equation,
Therefore, finding the small parameter and exerting it into the equation are
difficulties of this method. Many different mathematical methods have been
recently introduced to climinate the small parameter. In 1992, Liao [9] has
'-prdposcd a new analytical method called the homotopy analysis method,
which introduce an embedding parameter to construct a homotopy and then
analyzes it by mecans of Taylor formula. Thercfore, unlike the perturbation
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method, this method is independent of small parameters and can overcome
the restrictions of the perturbation methods. The homotopy perturbation
method provides a universal technique to introduce a perturbative parameter.
This method has been introduced in 1999 by He [6] and was further
developed and improved by him [4]. The method has been used by many
authors |3] in a wide variety of scientific and engineering applications to
solve different types of governing differential cquations, In this paper, the
basic idea of the homotopy perturbation method is introduced and then, the
nonlinear equation of SEIR model is solved through the homotopy
perturbation method. The purpose of this paper is 1o extend the homotopy
perturbation method for computing the approximate analytical solution of a
SEIR model with varying total population size and then see how these
solutions compare with the solutions by numerical method.

This paper is organized as follows: Sections 2 and 3 are devoted to a
short description of the SEIR models with varying total population size and
the analysis of homotopy perturbation method, respectively. In Section 4, we
present the analytical approximate solutions obtained by implementing the
homotopy perturbation method to the SEIR model with varying total
population size followed by comparison of results between the approximate
solutions and the solutions obtained by numerical method. The last section is
conclusion.

2. Mathematical Formulation

Formulation of SEIR model with varying total population size using by a
compartmental approach is given by Li and Fang [7]. It is assumed that the
local density of the total population is a constant. A population of size N(¢)

is partitioned into subclasses of individuals who are susceptible, exposed
(infected but not yet infectious), infectious and recovered, with sizes denoted
by S(t), E(1), {(r), and R(r), respectively. The sum E(¢)+ [(¢) is the total
infected population. Our assumptions on the dynamical transfer of the
population are then demonstrated in the form of SEIR model as depicted by
Figure 1.
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Figure 1. A schematic representation of the flow of individuals between
epidemiological classes.

The parameter b > 0 is the constant rate for natural birth and « > 0 is
that of natural death. It is assumed that all newborns are susceptible and
vertical transmission can be neglected. The parameter o is the constant rate
for diseasc-related death and vy is the rate for recovery. The rate of removal g
of individuals {from the exposed class is assumed to be a constant so that 1/
can be regarded as the mean latent period. In the limiting case, when
£ — oo, or cquivalently, when the mean latent period I/e ~» 0, the SEIR
model becomes a SIR model, The recovered individuals are assumed to
‘acquire permanent immunity; there is no transfer from R class back to the §
class. The per capita contact rate A, which is the average number of effective
contacts with other individual hosts per unit time, is then a constant. A
fraction / (¢)/N(r) of these contacts is with infectious individuals and thus
‘the average number of relevant contacts of each individual with the

zinfectious class is A/{1)/ N(r). The total number of new infections at a time ¢
is given by AZ(1)S{1)/N(¢). The following differential equations are derived

based on the basic assumption and using the transfer diagram:

Lo by - s - 25

%:%E—(a+d15.

%=EE—(y+a+d)!.
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subject to the initial conditions
S5(0) = 0, £(0) = 0, 7(0) = 0, R(0) 2 0.
The total population size N(t) can be determined by N(t) = St} + E(2)

+ I{t) + R(¢) or from the differential equation

i“g:'— = (b-d)N —al, 2)

which is derived by adding the equations in (1).
3. Analysis of Mecthod

In this section, we illustrate the basic idea of the homotopy perturbation
method for solving nonlinear differential equation in which we consider the
following general nonlinear problem:

Alu(r)) =0, r e Q, 3)

where 4 is a ronlinear operator, #(#) is an unknown function, » is an

independent variable, and €2 is the domain. We construct a homotopy
v(r, p): %[0, 1] > R which satisfies
H{v, p) = (1= p)(L{v) = L{vg)) + pA(v),

where p € [0, 1] is an embedding parameter, L denotes an auxiliary linear
operator and vy is an initial approximation of the exact solution. By equating

to zero the homotopy function, the zerc-order deformation equation is
constructed as

(1= p}(L(v) = L{w)) + pA(v) = 0. (4)
Setting p = 0, the zero-order deformation equation (4} becomes
L{v) - L(vg) = 0. )
Using (5), by linearity N

v(r, 0) = vg(r).
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When p = 1, the zero-order deformation equation (4) is reduced to
A(v(r. 1)) = 0,
which is exactly the same as the nonlinear equation (3), provided

v(r. 1} = u{r).

According to the homotopy perturbation method, the solution of the
cquation (4) can be cxpressed as a series in p in the form:

V=g + opv o+ pzvz + e (6)
When p — |, equation (4) corresponds to the original equations (3) and (6)
becomes the approximate solution of equation (3), i.e.,

H=limv=v0+p]+1;2+..._ (7)
p—=l

The convergence of the series in equation (7) is discussed by He in [5).
4. Application of Method

In this section, the homotopy perturbation method described in the
previous section for solving a SEIR model with varying total population size
is applicd. Then comparison is made with the numerical method to assess the
accuracy and the cffectiveness of the homotopy perturbation method. The
first step is to transform the variables.

Let s = S/N, e = E/N,i=1/N, and r = R{N denote the fractions of
the classes S, £, /, and R in the population, respectively. [t is easy to verify
that s, e, i, and r satisfy the system of differential equations:

ds : :

T b — bhs — Lis + as,

de , i

~ = Ais — (e + b)e + aie,

di : :2
E_w (y + o +dYi + i,
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-j,—: = yi — br + air, (8)

subject to the restriction s +e+i+r =1. Note that the tota! population size
N(r) does not appear in (8); this is a direct of the homogeneity of the system

(8). Also observe that the variable r does not appear in the first three
equations of (8). This allows us to attack (8) by studying the subsystem:

é‘l:b—bs—kis+ais,

dr

%;’.=Afs—(a+b)e+aie.

ai _ + o+ b)i + ai® )
E_ge—(y o +b)i s

and determining » from ¥ =1 -5 —e¢~r or

%:yi~br+air.

Subsystem (9) will be solved by generalizing the described homotopy
perturbation method. The linear operators Ly, Ly, and Ly can be defined as

below:
N ds de N _ di
Li{s) = =+ Ley=— L =7
From (9) nonlinear operators 4, 4, and 43 can be defined as

Afs) = g;—-b+bs+lis—-ais,

Ayle) = %g —Ais+ (e + b)e~ aie,

A3(i)=%;;—ee+(y+a+b)i—ai2.
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According to cquation (4), we can obtain

(1- p)[-({f- - _d_sg_) + p(ff_ —b+bs+ Mis - uis) =0,

dtdt d!
de  dey de . .
(1- p)(-‘}? - Ti-t_) + p[—&— - Mis + (e + b)e - oue) =0,

di  di di L
(l—p)(:ﬁ—cT?)+p[-d—’—t:e+(y+a+b):-wz)=0. (10)

and the initial approximations are as follows:
sp{r) = 5(0), eplr) = €{0), iy(r) = i(0).
In the tollowing we assume the solution for system (10} in the form:

o 2 3

S=Sg+ pspr pisyt prsy e,
= 2 3

ce=¢gtpep+ pey + prey e,

. . 2. 3.

=g+ pip+ piy + pliz + e, (rn

Substituting equation (11) into (10} and equating the term with identical
powers of p, we obtain the set of initial value problems. Coefficient of p

gives the following initial vaiue problem:

s ,
;%=b—m0—ﬂ—amm.
2 < wigeg + Mgs — (e + b)e
7 €0 0sp — (& 0
oy . 2
-;!—"-=s:e —{y +a + b)iy + aif,

with initial conditions: 5{0) = 0, ¢{0) = 0, 4{0) = 0. Solving the above

equations, we obtain the following approximations:

§ = [b - bSD - (A. - Cl)iﬂSo](,

L
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e = [(Ifoeo + AigSp — (8 + b)eo]l,
iy = [eeg ~ (v + a + bYip + aig .
CoefTicient of p2 gives the following initial value problem:

L)

-+ = -bs| - (A - aY(ign + ilso).

ff_;Tz = Miysg + igm) + oigey + hreg) = (£ + b)e,

-‘g—f- = gg + (Y + o + )i + 2agiy,
with initial conditions: $5(0) = 0, e{0) = 0, &,(0) = C. Solving the above

equations, we obtain the following approximations:
8§y = —é—b[b - bSO - (7\. - C)'.)f()..‘o‘o]fz
. a)[—;-io(b ~ bsg ~ (0 - @)igso)?

+—=leeg —(y +a +b)ig + wﬁ]solz}

1
2
Ly + b)ig + aidls 2 el [ - bsg - (A - )igsq)e?
ey = 5 Meep — (v + a + bjig + aig Jsor” + 5 Mo 0
1 .. . b 2
+ Eaio[afoeg + Aigsg — (€ + b)eglt
+ %a[seo —(y +a+b)ig + ai%]eotz
—%(a + b)aipeg + Aigsg — (e + b)eo]tz,
iy = L eaige + Agsp — (& + B)eg)i?
i = 58[(1[090 + AlpSo 0

+ -;—(7 +a+b)eeg — (v + o+ b)ig + ou'(%]t2

. 21,2
+ oigleeg — (v + o + b)ig + oug]t ,
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and so on, in the same manner the rest of the components can be obtained

using the symbolic package. According to the homotopy perturbation
method, we can obtain the solution in a series formed as follows:

S=SFS + S+,
¢ =e +£‘[ “+ ey + e
F=dy + i)+ iy + e, (12)

Suppose given the following data;
individual in the location S(0)

people  £{0) = 1 thousand;

the initial number of susceptible
=10 thousand: the initial number of expose
initial number of actively infected people
1(0) = 0: The parameter v

alues used for numerical simulation is given in
Table 1,

Table 1. Values used in the numerical simulation [2]

A | The parameter controlling how often a susceptible- | 0.05
infected contact results in a new exposure

T
v | The rate an infected recovers and moves into the | 0.003

resistant phase

Homotopy Perturbation Method for a SEIR Model ... 197

Table 2. Comparison between absolute error of homotopy perturbation
method (HPM) and numerical method (NM)

C U s@upr =5Owna | 1eOmpr —Opps | | 1HOpa x|
0 0 0 0
0.1 3.0000x 107'° 3.6000 x 10~'° 22769 x 1077
0.2 2.7000 x 107° 2.7600 x 1077 9.1061 x 1077
0.3 8.9000 x 10~ 9.3200 x 1077 2.0485 x 107
0.4 2.1200 x 1078 2.2050 x 1078 3.6413 x 1076
0.5 4.1500 x 1078 43010 x107% 5.6887 x107°
0.6 7.1600 x 107 74700 x 1078 8.1902 x 1075
0.7 1.1400x 1077 11922 x 1077 11146 x 107
0.8 1.7040 x 1077 1.7842 x 10~7 1.4554 x 107
0.9 2.4260 x 10”7 2.5412 x 1077 1.8418 x 10~°

1 3.3290 x 1077 3.4813x 1077 2.2734 x 1073

¢ | The rate at which an exposed person becomes | 0.05

infective
b | The natural birth rate 0.00001
a | The rate for discases related death 0.002

Then following approximate solution is obtained as result of first 6
terms of the scrics decomposition {12). Results calculated by homotopy
perturbation method are compared with numerical solution in Table 2. The
explicit Runge-Kutta method in symbolic computation package has been
used to find numerical solution of s(t), &(t), and i(t). As it can be seen in

a very good agreement between homotopy perturbation
mcthod result and numerical solutions,

Table 2, there exists

5. Conclusions

In this paper, homotopy perturbation method has been successﬁ.t‘lly
applied to find the schition of the SEIR model with varying total population
size. The method is reliable and easy to use. The main advantage of -the
method is the fact that it provides its user with an analytical approximan(?n,
in many cases an exact solution, in a rapidly convergent sequence with

elegantly computed term.
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