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1. INTRODUCTION

For centuries, human being had utilized many Gods’ creation to fulfill
their needs. The history has recorded that to fulfill the nutrition need,
human had utilized many plants and animals through food gathering until
raising them. However, the increase in human population has forced them
to optimize the crop, milk or meat production through breeding program
which basically is a process of genetical assembly to obtain new plant or
animal having better performance. One of issues in this process is the
selection of parents as source of genetic to assembly. The selection usually
performed by choosing individual that showing good performance in the
trait of interest such as has high production in meat, milk or crop. However,
the nature of certain trait making the selection is difficult to be performed
such as resistance for certain disease or carcass quality. The selection could
become more complicated due to the effect of environment on the trait of
interest.

On the other hand, the development in molecular biology has lead us
to understand that genes, in the form of DNA, determine the expression of
the traits. DNA (deoxyribonucleic acid) is a molecule that is shaped like a
double helix and made up of pairs of nucleotides. DNA is packaged into
chromosomes which are located within the nucleus of all cells. Every cell in
the body contains all of the chromosomes that collectively make up the
genome of that organism. DNA codes for amino acids which are linked
together to make proteins. A gene is a stretch of DNA that specifies all of the
amino acids that make up a single protein. Proteins are the building blocks
of life. There are thousands of proteins in the body (encoded by thousands
of genes). The interaction and structure of proteins determines the visible
characteristics or phenotype of an organism, while the genotype refers to the
genetic makeup. By knowing genes that code the proteins which affecting
traits, we could determine the phenotype of the trait before they appear.

In the next section, the role of DNA in breeding program through the
concept of Marker Assisted Selection will be discussed. Furthermore, the
determination of whether certain gene is truly“affecting the trait could be
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performed by means of hypothesis testing which is the role of the statistics.
Further explanation on the role of statistics in this issue will be presented in
Section III. Finally, the prospect and preparation of Marker Assisted
Selection is discussed in Section IV.

2. MARKER ASSISTED SELECTION

The idea behind marker assisted selection (MAS) is genes hunting, i.e.
selecting genes having significant effects on the trait of interest. Some traits
are controlled by single genes (e.g. hair colour) but most traits of economic
importance are quantitative traits that most likely are controlled by a fairly
large number of genes. However, some of these genes might have a larger
effect. Such genes can be called major genes located at certain regions in
chromosome or loci. These loci are then called Quantitative Trait Loci or
QTL. Although the term QTL strictly applies to genes of any effect, in
practice it refers only to major genes, as only these will be large enough to be
detected and mapped on the genome. Following the pattern of inheritance at
such QTL might assist in selection.

Recently, scientists have started to identify regions of DNA that
influence traits. They have used the techniques of molecular biology and
quantitative genetics to find differences in the DNA sequence in these
regions. Tests have been developed to identify these subtle sequence
differences and so identify whether an individual is carrying a segment of
DNA that is positively or negatively associated with the trait of interest.
These different forms of a genetic marker are known as DNA-marker. MAS
then could be defined as the process of using the results of DNA-marker
tests to assist in the selection of individuals to become the parents in the next
generation of a genetic improvement program. That is, instead of using
only a traditional selection program which based on the phenotype of the
trait to increase the proportion of favorable alleles for the genes that affect a
certain trait, specific DNA tests are used to assist in the selection of those
favorable alleles. Genotyping allows for the accurate detection of specific
DNA variations that have been associated with measurable effects on
complex traits. It is important to remember that markers for complex traits
are associated with only those genes that are located in close proximity to
the marker and do not identify favorable alleles for all the other genes that
are associated with the trait. Selecting an individual that carries favorable
alleles of a marker, which is the allele that is associated with a positive
impact on the trait of interest, can result in an improvement in the observed
phenotype for that trait. ‘ ‘

Potential benefits from marker-assisted selection are greatest for traits
that:
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* have low heritability (i.e. traits where an individual's measured value
is a poor predictor of breeding value due to the large environmental
influences on the observed value).

* aredifficult or expensive to measure (e.g. disease resistance).

* cannot be measured until after the individual has already contributed
to the next generation (e.g. reproduction or longevity).

*  are currently not selected for because they are not routinely measured
(e.g. tenderness).

* are genetically correlated with a trait that you do not want to increase
(e-g- a marker that is associated with increased marbling but that is
not also associated with those genes that increase backfat thickness).

The use of molecular marker has been applied in assisting the
selection in breeding program for plant and animal as well. For example,
molecular marker has been applied in selection for resistance to pathogen in
tomato (Barone, 2003), in improvement of quantitative trait for forage crops
(Dolstra et al, 2003), improve the efficiency of introgression of cotton fiber
quality trait (Lacape, 2003), breeding program for major cereals such as
wheat, barley, rice, and maize (Koebner, 2003 and Korzun, 2003), breeding
program for pome fruit (Tartarini, 2003), and powdery mildew resistance in
grapes (Dalbo et al 2001). In the case of animal breeding, molecular marker
has been applied to dairy sheep (Pragnacco and Carta, 2003), detect
brodiness trait of Kampung chicken (Sartika et al, 2005) even for fish
breeding program (Sonesson, 2003).

Figure 1 shows the principle of inheritance of a marker and a linked
QTL to give illustration how to use DNA marker in identifying trait of
interest. We can identify the marker genotype (Mm) but not the QTL
genotype (Qq). The last is really what we want to know because of its effect
on economically important traits. Let the Q allele have a positive effect,
therefore being the preferred allele. In the example, the M marker allele is
linked to the Q in the sire. Progeny that receive the M allele from the sire,
have a high chance of having also received the Q allele, and are therefore the
preferred candidates in selection.

As shown in Figure 1 there are 4 types of progeny. All progeny will
inherit m alleles and q-alleles from the mother. The sire will provide them
with either an M allele or an m allele and either Q or q. In the figure, 90% of
the progeny that receive an M allele has also received a Q allele, because M
and Q alleles are linked on the same chromosome in the sire. However, in
10% of the cases after the sire reproduced, there has been a recombination
between the two loci, and animals that inherited an M allele from their
father have received a q allele rather than a ‘Q allele. Therefore, marker
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alleles do not always provide certainty about the genotype at the linked
QTL.

Geae locanoa —>»  Q q q q

Parents: <
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X
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Probabilities: 90% 10%

Figure 1. The inheritance pattern of DNA marker and QTL

The next problem arises here is that how to evaluate whether certain
DNA marker is close to QTL of interest. If certain marker is close to QTL,
the next question should be answered is what size is the effect of QTL on the
trait of interest. The method to answer these problems is discussed in the
next section.

3. QTL MAPPING

The questions mentioned above basically refer to what is the location
of the QTL relative to DNA marker and what is the size of its effect on trait.
All these questions could be answered through a process called QTL

mapping.

The history of QTL mapping can be traced bask to 1920's. Sax (1923)
use the morphological markers to demonstrate an association between seed
weight and seed coat color in beans. The method pioneered by Sax is
known as single marker. The general idea of single marker is as follow.
Suppose that in a certain region of chromosome, QTL of interest is located
near the region where the marker is located with distance r as shown in

Figure 2 (here r is recombination unit between marker and QTL).

+—————- r ————- > I
A .
M
Q
(marker) (putative QTL)

Figure 2. Single marker genetic model
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If the QTL and the markers are segregating in a genetically defined
population, then the linkage relationships among them may be discoverable
by looking at the association between the trait variation and the marker
segregation pattern. Here, we use backcross design as for example.

In classical backcross design, the population is generated by a
heterozygous F1 backcrossed to a homozygous parent (for example, a cross
of MmQq x MMQQ)(Figure 3) The rationale behind the single marker
analysis can be explained using co-segregation pattern listed in Table 1.
Marker M and QTL Q are assumed to be linked with r recombination units
apart. The expected frequencies for the four marker-QTL genotypes
(MMQQ, MMQq, MmQQ, mmqg) are listed in Table 1. The conditional
frequencies of the QTL genotypes (QQ and Qq) on the marker genotypes
(MM and Mm) can be obtained by dividing the joint marker-QTL genotypic
frequencies by the marginal marker genotypic frequencies. Hence, the
expected phenotypic values for the observable marker genotypes can be
obtained as

v = P(QQ[MM) w1 + P(Qq | MM) 1
“Dwtre
Hym = P(QQ[Mm) i + P(Qq |Mm) 2
=rp+ (1) pe (1)

where i and p; are the expected genotypic value for the two QTL
genotypes QQ and Qq, respectively. Then, QTL is detected if tmm and fivm
are not equal. Using this idea, then hypothesis to be tested in single marker
analysis is:

Ho: pvm = pMm
To test the hypothesis, we can use several methods such as: T-test,
linear regression, and likelihood ratio test.
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Parent: Q Q q q
X
M M m m
Backecross:
Q Q Q q q q
X X,
M M M m m m
I Fl l Expected
Frequency
MMQQ MmQq 0.5(1-1)
BC Progeny: MMQq Mmqgq 0.5r
MmQQ mmQq 0.5
MmQq mmqq 0.5(1-)
Note: r is recombination frequency between M and Q

Figure 3. Conventionally defined backcross progeny
Table 1. Co-segregation pattern for backcross design

Marker | Observed | Marginal QTL Genotype Expected
Genotype | Count | frequency QQ Qq Trait Value

Joint frequency

MM n 0.5 0.5(1-1) 0.5r

Mm n 0.5 0.51 0.%(1-1)
Conditional frequency

MM nm 0.5 L1 R 11y +r1 2

Mm n; 0.5 T 1-r r g+ (1) 2

For the T-test method, the test statistic is

where s2 is the pooled estimate of the variance within the two classes
of marker genotypes. When we use the linear regression method to test the
hypothesis, we assumed that the model is

Yi=PBo+ P1 Xi+e&i ©)
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where Yi is the trait value for the ith individual, and X; is the dummy
variable taking 1 if the individual is MM and -1 for Mm. To test the
hypothesis of equality of puwm andpy is equivalent to test the hypothesis of
fi = 0. When we use likelihood ratio test method, the likelihood is
constructed based on the distribution of trait values usually assumed as
normal. Let

Yi~ N(p, 02 (4)

where p; takes value pvv and puq if ith individual has MM and Mm of
genotypic marker, respectively. Let Q; and Q; denote the QQ and Qq of
genotypic QTL, respectively. Using Equation 1, we obtain

2
Yi ~ 2 P(Q; IM)N(y;,06%) (5)
J=1

where M; is the marker genotype of ith individual. Then, the
distribution of each individual is mixture of two normal distributions with
the mix proportion equal to conditional probability of QTL genotype given
marker genotype. Hence the likelihood is

| a2 (v —1;))°
L(py,15,0°%,1) = HZP(QJ"Mi)‘:"P“ ol (O]
fon? || = 20

whereas the logarithm of likelihood is

0| (v ~n)?
Log{L(ky.5,6%,0)] = 3. Log) 3" P(Q; | M, xp “TZJ
i=] j=1

n
—ELog(chrz) (7)
Under the null hypothesis Ho: p; = p, or = p2 = p, the log likelihood

1 & n
LoglL(uy =pz =W]=~—=52.(Y; -’ -~ Log(2mo?)
P -

and for the null hypothesis Ho: r=0.5, the log likelihood is
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n 2 —n)?
Log[L(r = 0.5)]=),Log Eiexp - g'—z—f})— - % Log(2n0?)
il i=

The test statistic for likelihood ratio test is

G = 2{Log[L(f;,ii,,8", )]~ Log[L(r = 0.5)} ®)

where the log likelihoods are evaluated using the maximum
likelihood estimates of i, 2, 62 and r. it is also common to use lod scores
for QTL detection. The differences between the G-statistic and lod score are
the bases for the logarithm and the interpretation. G-statistic is computed
using natural logarithm and interpreted as a probability of occurrence the
data under the null hypothesis. On the other hand, lod score is computed
using the base 10 logarithm and interpreted using the concept of an odd
ratio. For example, a lod score of 2 means that the alternative hypothesis is
102 = 100 times more likely than the null hypothesis (Liu, 1998).

In evaluating the result of single marker analysis, it has been common
to plot of the test statistic against genome position as illustrated in the
following Figure 4. The peak in the plot usually treated as genome location

of QTL.

Likely location
of major gene

Location of
markers

Lod score

[of 111071

Position on chromosome

Figure 4. LOD score plotted against genome locations
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As mentioned above that the hypothesis to be tested in single marker
analysis is Ho: ptmm - pmm = 0. The expectation of difference between the two
marker classes is

I HVIVETIY™| = [(1-r) w1 + rpiz] - [rps + (L-1) o}
= (1-2r)(pu-p2)
= 2g(1-2r) = (a+d)(1-2r) )

For the null hypothesis Ho: pmm - pmm= O there are two possible
interpretations: (a+d) = 0 or r = 0.5. The biological meaning for the first one
is that there is no genetic effect, for the other, that the QTL and the marker
are independent (o linkage). Therefore, although all of the methods used
in the single marker analysis are relatively easy to conduct the QTL effect
and the QTL location are confounded. In addition, single marker analysis
can not estimate the number of QTL.

To overcome .this problem, Lander and Botstein (1989) proposed a
method called interval mapping. The idea of interval mapping is in
investigating the existence of QTL we search upon certain interval in
genome flanked by two adjacent markers rather than near one marker as in
single marker analysis (see Error! Reference source not found. for an
illustration of this idea). Markers A and B are linked with recombination
fraction r, and Q is located between the two markers with r; recombination
fraction from A and r; from B.

fy A n
A
Q

(marker) (marker)
(putative QTL)

Figure 5. Linkage relationship of a QTL and two flanking markers

There are two common methods in analyzing QTL using interval
method: likelihood approach and regression approach. Moreover, Liu
(1998) mentioned that problem still exist in interval mapping, such as the
number of QTL can not be resolved, the location of QTL are sometimes not
well resolved and the exact positions of the QTL can not be determined, and
the statistical power is still relatively low. These problems occur mainly due
to linked QTL, there is interaction among QTL, and limited information
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contained in the model. One of the reasons for these shortcomings is that
the test used in the interval mapping is not an interval test. An interval test
is that the effect of the QTL within a defined interval should be independent
of the effects of QTL outside the region. Hence, Jansen and Stam (1994) and
Zeng (1994) proposed composite interval mapping as extension of interval
mapping by incorporating another marker as cofactor.

All the method previously mentioned, assuming that the trait of
interest is in continuous scale. On the other hand, many important traits are
obtained in categorical scale, such as resistance from certain disease. If the
resistance from the disease is obtained as suscept or resistance, then the trait
is in binary scale, whether if the resistance scored on ordered scale varying
from unaffected to dead then the trait is in ordinal scale. Another trait could
also be obtained in nominal scale such as shapes and colors of flowers,
fruits, and seeds in plants, as well as coat colors. Froma theoretical point of
view, QTL mapping method assuming continuous trait could not be applied
to categorical trait.

In dealing with binary trait, Xu and Atchley (1996) proposed
likelihood based method by assuming thiere is continuous distribution called
liability underlying binary trait by means of threshold model. Similar
approach proposed by Hackett and Weller (1995) in dealing with ordinal
trait. On the other hand, Hayashi and Awata (2006) proposed likelihood
based approach in analyzing trait in nominal scale. The binary trait is
analyzed using threshold model obtained as the following.

In dealing with binary trait, it is assumed that there is continuous
distribution, say U, underlying binary trait, say Y, referred to as liability (Xu
and Atchley, 1996). In relation between liability and binary trait (such as
resistance to certain disease), it is assumed that there is threshold (y) in the
scale of liability, below which the individual has unaffected phenotype, and
above which it is affected (see Figure 6).

Figure 6. Liability and threshold model for binary trait
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The relation can be summarized by

_ L ifu; 2y 10)
YiZ\o; ifu, <y

Maximum likelihood (ML) approach

Using liability model, the one-QTL ML mapping model for a
backcross population can be written as

wu=p+bx'+te, i=12,..,n (11)

where u; is the liability value for individual i, p is the mean, b is the
effect of QTL Q, xi* taking the value of 1 (0) for homozygote QQ
(heterozygote Qq), denotes the genotypes of Q, &; is environmental deviation
and is assumed to follow N(0, 6?). Since the liability is unobserved, the
mean p and variance of & can be set at any arbitrary value (for simplicity, it
is determined that p = 0 and 02 =1).

Based on the conditional probability of u; given x;', the conditional
probability of y; given x;" is obtained by

PWix; )= [ flux; )dgulx; )
4

== [l e} ) = 1= 0y~ )= ofex; -)
- (12)

where ®(f) stands for the standardized cumulative normal
distribution function and § is the argument. Analysis involving ®() is
referred to as probit analysis. However, the probit model is difficult to
manipulate because numerical integration is required although the
parameters are easy to interpret. So, a logistic model is employed to
approximate ®(§) for estimation purpose and is expressed by

__exp($)
W(‘f)_nexp@) S m



The relationship between a probit model and a logistic model is ®(€) ~
w(d&), where d = n/V3. Theréfore,

exp{d(bx; 7))

: (14)
1+exp{d(bx; —y)}

P =1x; )~

Since the QTL genotype x;' could be homozygote (1) or heterozygote
(0) for an individual, the likelihood is then a mixture distribution with
mixing proportions equivalent to the conditional probabilities of QTL
genotypes given two flanking markers, qu and qi for the QTL genotypes
QQ and Qq respectively (see Table 1). For n individuals in the sample, the
likelihood function is

n 2
1-
LG[zqijpijy'(l—Pij) &
i= j=l

where pi and pi; denotes the conditional probability of y; = 1 given
the QTL genotypes xi' = 1 and xi' = 0, respectively. The log likelihood
function is

n 2
=3 log(¥q;p;" (1 _Pij)l_y' ) (15)
=l el

On the other hand, ordinal trait is analyzed using threshold model by
introducing several thresholds. The example of ordinal trait could be
accessed such as in Afendi et al (2006).

4. PROSPECT AND PREPARATION

As explained above, MAS could help the breeding program by
effectively selecting genes which significantly affect the trait of interest.
Moreover, the selection of the genes is performed through a process in QTL
mapping which is deeply full of statistics concept. To give the clear picture,
let take a look again at QTL mapping. In QTL mapping, the genotype of
QTL is unobserved. But by using the genotype of two adjacent DNA
markers flanking the putative QTL, the conditional probability of QTL
taking certain genotype could be determined. Here, we need the concept of
probability theory. Furthermore, in testing the QTL effect on the trait of
interest, it is again we face the deep statistics concept. First, in estimating
the effect of QTL we could use likelihood method (Lander and Botstein,
1989), least square method (Haley and Knott, 1992; Martinez and Curnow,
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1992), or iteratively reweighted least square method (Xu, 1998; Xu, 1998)
which are found in point estimation theory in statistics concept. This part is
also applicable for advance optimization method such as Expectation
Maximization Method (Xu, 2003; Xu, et al 2005), or Expectation Conditional
Maximization (Xu, et al, 2005). Second, evaluation of the effect of QTL on
the trait is conducted through modeling the effect into mathematical
equation plus random effect as the representative of environment effect
which is again full of statistics concept especially statistical modeling. Here,
we use linear model if the trait is observed in numerical scale (Lander and
Botstein, 1989; Haley and Knott, 1992; Martinez and Curnow, 1992; Jansen
and Stam, 1994; Zeng, 1994); and generalized linear model if the trait is
observed in categorical scale (Xu and Atchley, 1996; Hackett and Weller,
1995; Hayashi and Awata, 2006). The development in statistics concept
could also be applied here such as Bayesian concept (Yi, et al, 2004) as we
need prior/ posterior information.

From the above explanation, statistics plays important role in MAS
especially in QTL mapping part. However, MAS could not be performed by
statistics alone. Biology especially genetics also play important role. The
process in obtaining the genotype of DNA marker (genotyping) could be
performed by using the help of advanced molecular biology. After the
genotype is obtained, basic genetics as well as quantitative genetics play
important role by giving us the theoretical base in understanding the
inheritance pattern of genes in population under study. Moreover, MAS is
used in optimalizing the breeding program. Hence, the concept of plant
breeding as well as animal breeding also play important role. Finally, the
breeding program is designed to answer the problem in many areas such as
food and health. To obtain the optimal result, the concept in those areas
could not be forgotten. For example, the knowledge of inheritance pattern
of certain disease could help much the breeding program by giving us the
guidance on how the breeding program is conducted. As an illustration, if
the disease is sex linked, then the breeding program should be conducted
differently compared to the disease that is not sex linked.

As a result, MAS is a concept which is collaboration of several fields,
Le. statistics, biology especially genetics, breeding, and the area where the
breeding program is applied. Hence, MAS is potential as a means in
collaborate those fields. Department of Statistics of IPB, due to the nature of
the higher education institution, could play its role in the development of
statistical concept in MAS. Of course, the collaboration with other
institution such as Department of Agronomy, departmeént related to animal
science and health science as well as government institution such as BB
Biogen is needed. However, breeding program is a global issue. Hence,
these collaborations should be conducted also with other institution outside
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IPB, such as: ITB (Indonesia), UNISBA (Indonesia), UPM (Malaysia), UKM
(Malaysia), and many other universities in Indonesia and Malaysia.

5. CONCLUDING REMARK

The future of MAS in agriculture, food, and health problem is
obvious. In food and agriculture, the technology will increase agricultural
productivity, strengthen diseases resistance, reduce failure, and obtained
desired result. In health sector, MAS can detect major genes as early as
possible. With help of tools in molecular biology, statistics, as well as IT
with computer at high level memory, MAS program is possible. To
optimize potential expertise in this area, a collaboration is needed in
conducting MAS involving IPB (Indonesia), ITB (Indonesia), UNISBA
(Indonesia), UPM (Malaysia), UKM (Malaysia), and many other universities
in Indonesia and Malaysia.
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