KULTUR JARINGAN KELAPA SAWIT (Elaeis guineensis) DI PUSAT PENELITIAN PERKEBUNAN MARIHAT¹⁾ # TISSUE CULTURE OF OIL PALM (Elaeis guineensis) ON RESEARCH CENTER STATION CROPS ESTATE MARIHAT Gale Ginting, R.A. Lubis dan Adlin U. Lubis2) #### ABSTRACT The step of forming oil plam plantled by tissue-culture method is very complex and necessery to be accuratly implemented, either selection of ortet or laboratory process. Some criteria which determine the success of tissue-culture in oil palm are as follows: the selection of superior ortet, no mutation, the selection as a whole cover each culture phase, the existing of juvenilitation, able to regeneration and the technique used can be economically implemented. The variation in yield among trees on progenies trial of $D \times P$ (Tenera) is about 60 - 100% above average yield, therefore selection of individu and its multiplication is one of the suitable system for increasing yield. Another advantage of tissue-culture method is to assist in problem solving of breeding. Marihat Research Centre For Estate Crop (MRCEC) setted up tissue culture laboratory in 1985 and the clone resulted by that laboratory has been planted since 1987 on several region in Indonesia. Since 1987 up to 1991, amount 165 clones have been handled in tissue-culture process, and 33 clones among others were planted on the field as wide as about 1.000 ha area. From field ebservation it has been proved that the clones can adapt well to the environment, uniformity in the vegetative growth and normal flowering. The Fresh Bunsh (FFB) production were higher around 20 percent compared to plants from seedlings. Disampaikan pada Seminar Bioteknologi Perkebunan dan Lokakarya Biopolimer Untuk Industri PAU Bioteknologi IPB, Bogor, 10 - 11 Desember 1991. ²⁾ Peneliti Pusat Penelitian Perkebunan Marihat, PO BOX: 37 Pematang Siantar #### RINGKASAN Tahapan perkembangan kultur jaringan kelapa sawit mulai dari pemilihan pokok induk (ortet) hingga terbentuknya planplet merupakan hal yang cukup rumit dan membutuhkan ketelitian. Kriteria yang menentukan keberhasilan kultur jaringan kelapa sawit sebagai berikut: pemilihan pokok induk (ortet) yang unggul, tidak terjadi mutasi, seleksi menyeluruh pada tiap tahap kulturisasi, memungkinkan terjadinya pemudaan, kemampuan regenerasi tidak hilang dan teknik yang digunakan secara ekonomis dapat diterima. Adanya variasi produksi antar pokok pada kebun penguji D x P (Tenera) yang cukup besar 60 - 100% di atas produksi rata-rata pada beberapa pokok dari tiap persilangan (crossing) maka pemilihan individu dan perbanyakannya merupakan cara yang paling tepat untuk meningkatkan produksi. Disamping peningkatan produksi maka melalui cara ini dapat membantu memecahkan berbagai persoalan pemuliaan. Laboratorium kultur jaringan Pusat Penelitian Perkebunan Marihat telah dibangun pada tahun 1985 dan sejak tahun 1987 telah dilaksanakan penanaman klon ke beberapa PT Perkebunan di Indonesia dengan kondisi iklim yang berbeda. Sejak tahun 1987 hingga tahun 1991, dari 165 klon yang telah dikultur berasal dari persilangan unggul, 33 klon telah ditanam dilapangan dengan luas areal sekitar 1.000 ha. Hasil pengamatan dilapangan menunjukkan bahwa klon kelapa sawit dapat beradaptasi dengan baik terhadap ling-kungannya, keseragamannya dilapangan sangat menonjol, pertumbuhan vegetatif maupun pembungaannya normal. Produksi Tandan Buah Segar (TBS) lebih tinggi sekitar 20% dibandingkan tanaman yang berasal dari biji. #### 1. PENDAHULUAN Salah satu tugas yang diemban Puslitbun Marihat adalah pengadaan bahan tanaman kelapa sawit dengan mutu terbaik dan dalam jumlah yang mencukupi bagi kebutuhan sektor Perkebunan kelapa sawit di Indonesia. Sejalan dengan tugas di atas maka Puslitbun Marihat sejak puluhan tahun yang lalu berusaha mengembangkan pemuliaan kelapa sawit. Hasil yang dicapai telah banyak memberi kemajuan sehingga saat ini mampu menghasilkan minyak (CPO) per ha sebesar 5 - 6.8 ton dan inti sawit 1 - 1.5 ton (Lubis, A.U. et al., 1985). Usaha pemuliaan ini masih terus dilanjutkan walaupun membutuhkan waktu yang cukup lama. Variasi produski kelapa sawit antar pokok dikebun penguji D x P (Tenera) dijumpai variasi yang cukup besar yaitu 60 hingga 100% di atas produksi rata-rata. Pemilihan pokok terbaik dari tiap persilangan (crossing) dan perbanyakan secara kultur jaringan merupakan peluang yang terbaik untuk peningkatan produksi (Noiret, J.M., 1981). Selain untuk peningkatan produksi, teknik perbanyakan kultur jaringan dapat dipergunakan dalam mengatasi beberapa permasalahan seperti untuk: - Menghasilkan bahan tanaman dalam jumlah yang banyak pada waktu bersamaan, bermutu baik, produksi tinggi dan seragam. - Memperbanyak pokok induk Dura dan Pisifera secara klonal untuk tujuan produksi kecambah. - Memperbanyak tanaman yang memeiliki sifat-sifat tertentu, misalnya berbatang pendek, dan lain-lain. - Memperbanyak bahan tanaman yang sukar diperkecambahkan, misalnya Elaeis melanococca. - Memperbanyak pokok yang toleran terhadap beberapa penyakit yang bersifat genetis, misalnya penyakit tajuk (crown deseases), bercak kuning (genetic orange spoting) dan lain-lain. - Menghasilkan "clump embryoids" untuk pelestarian plasma nutfah (Cryo-conservation). Dari uraian tersebut maka kultur jaringan pada kelapa sawit di Indonesia menjadi sangat penting artinya dan dengan menggunakan metoda ini diharapkan dapat dicapai peningkatan produksi minyak menjadi 9 - 11 ton per ha/tahun (Lubis, A. U., et al., 1985). #### 2. BAHAN DAN METODA #### 2.1. Pokok Induk Klon (Ortet) Pokok induk klon (ortet) merupakan pokok pilihan yang diambil dari kebun penguji dimana telah diketahui potensinya dari hasil pengamatan selama beberapa tahun. Pokok yang terpilih sebagai pokok induk klon (ortet) harus memiliki kriteria pemilihan sebagai berikut: - Persilangan yang terpilih mempunyai potensi produks 7 9 ton minya/ha/tahun. Pokok yang dipilih sebagai ortet memiliki potensi 9 11 ton minyak/ha/tahun. - Kandungan asam lemak tidak jenuh di atas 54%. - Peningkatan pokok berkisar 40 60 cm/tahun. - Bebas penyakit tajuk (Crown desease). Contoh pemilihan ortet dapat dilihat pada Lampiran 1 dan contoh persilangan yang digunakan dapat dilihat pada Lampiran 2. ## 2.2. Pemilihan Sumber Jaringan Dari pokok induk klon (ortet) dipilih 4 daun (-4, -5, -6 dan -7) yang akan diambil sebagai sumber jaringan. Masing-masing daun diiris menjadi 25 block dan dari tiaptiap block dipilih 20 helai irisan daun, sehingga total sumber jaringan 2000 helai per pokok. #### *2.3. Metoda 4. Metoda yang digunakan adalah seperangkat prosede IRHO/ORSTOM Perancis (Pannettier, et al., 1981) sebagai berikut: | Tahap | Waktu (bulan) | |-----------------------------|---| | Sumber jaringan (daun muda) | - | | Pembentukan kalus | 3 | | Pembentukan embryo | 1 - 4 | | Perbanyakan embryo | 2 | | Penumbuhan daun | 4 | | Perakaran | 2 | | Bibit (plantlet) | | | um: | · · · · · · · · · · · · · · · · · · · | | Pengerasan | 1 | | Pre-nursery | . 3 | | Main-nursery | 9 | | | Sumber jaringan (daun muda) Pembentukan kalus Pembentukan embryo Perbanyakan embryo Penumbuhan daun Perakaran Bibit (plantlet) um: Pengerasan Pre-nursery | #### 3. HASIL ## 3.1. Laboratorium Pusat Penelitian Perkebunan Marihat Sejak tahun 1985, Puslitbun Marihat telah mengoperasikan laboratorium kultur jaringan. Luas bangunan saat ini 1200 m² dikelola oleh 2 orang staf dan 29 orang karyawan. Dengan luas bangunan ini diproyeksikan untuk menghasilkan 1 juta bibit per tahun. Sampai saat ini telah dikultur 165 klon yang berasal dari persilangan terbaik. Situasi kultur di dalam laboratorium dapat dilihat pada Lampairan 3. Laboratorium ini juga dilengkapi dengan seperangkat peralatan cryopreservation, yaitu tempat penyimpanan "clump embryo" sebagai stock dan dapat disimpan selama berpuluh tahun tanpa kehilangan potensinya. Jika dibutuhkan maka "clump embryo" dapat diambil dari dalam tabung penyimpanan sehingga bibit (plantlet) dapat diproduksi kembali. #### 3.2. Pengujian Lapang Penanaman klon dilapangan dilaksanakan sejak tahun 1987. Dari 165 jenis klon yang sudah dikultur, 33 jenis klon daripadanya telah ditanam dilapangan dengan luas areal sekitar 1.000 ha. Penanaman klon tersebut baik sebagai penelitian maupun semi komersial di lokasi PT Perkebunan Negara dan Perkebunan Swasta. #### 3.2.1. Hasil Pengamatan Pembungaan Pengamatan pembungaan dilaksanakan ketika tanaman berumur 18 bulan dan diakhiri pada umur 30 bulan, pada saat mulai dilaksanakan panen buah. Menurut Gasselin T.D. (1989), pengamatan pembungaan kelapa sawit dibagi dalam 5 kelompok yaitu: - bunga betina - bunga jantan - Hermaphordite - Androgynaeus - Mantled Hasil pembungaan klon dilapangan dapat dilihat pada Tabel 1. 1 1 " and the second of o The Control of Co Tabel 1. Pengamatan pembungaan klon kelapa sawit (MK:03, MK:04, MK:12) di Afd. IV Kebun Bah Jambi. Penanaman : Oktober 1988 No Percobaan: Agro BJ5 | Κ. | lon | Sensus | Sampling
(pk) | Bunga
jantan | Bunga
betina | Herma-
prodite | Andro-
gynaeus | Mantled | Sex-Ratio | |---------|---------|--------------|------------------|-----------------|-----------------|-------------------|-------------------|---------|--------------| | | | | | | • | | | | | | MK:03 | 3 | April 1990 | 72 | 380 | 89 | 63 | 8 | | 16.4 | | MK:04 | • | | 72 | 345 | 12 | 29 | 89 | • | 2.5 | | MK:12 | 2 | | 72 | 214 | 98 | 38 | 31 | _ | 25.7 | | DP MA | (benih) | | 72 | 112 | 126 | 23 | 3 | | 47.7 | | DP RS | (benih) | | 72 | 133 | 132 | 29 | 1 | - | 44.7 | | MK:03 | i | Sept. 1990 | 72 | 129 | 489 | 13 | | | 77 , | | MK:04 | - | | 72 | 144 | 327 | 17 | 11 | _ | 77.4 | | MK:12 | • | | 72 | 179 | 309 | 4 | 9 | | 67.0 | | DP MA | (benih) | | 72 | 90 | 239 | 3 | , . | _ | 62.8 | | DP RS | (benih) | | 72 | 151 | 269 | 5 | | - | 71.9
63.2 | | MK : 03 | | Desemb. 1990 | 72 | 98 | 548 | 8 . | _ | | 07.7 | | MK:04 | | , | 72 | 83 | 580 | 6 | 2 | _ | 83.7 | | 1K:12 | | | 72 | 91 | 485 | 3 | | _ | 85.6 | | OP MA | (benih) | | 72 | 94 | 293 | 5 | | _ | 79.1 | | OP RS | (benih) | | 72 | 123 | 312 | 4 | | | 75.3
71.1 | | | | · · · | | | | | | | | | 1K:03 | | Maret 1990 | 72 | 74 | 642 | 4 | - | • | 89.1 | | 1K:04 | | • | 72 | 23 | 649 | 5 | | | 95.8 | | IK:12 | | | 72 | 35 | 561 | i | • | | 93.9 | | | (benih) | | 72 | 81 | 352 | 2 | - | | 80.1 | | IP. RS | (benih) | | 72 | 112 | 364 | 1 | • | | 76.3 | Dari data pada Tabel 1 dapat dijelaskan beberapa hal sebagai berikut: - * Produksi bunga jantan pada awal pembungaan lebih tinggi klon dari pada tanaman asal biji (benih), tetapi sema-kin bertambahnya usia tanaman (30 bulan) produksi bunga jantan klon lebih rendah daripada tanaman asal biji (benih). - * Produksi bunga betina pada awal pembungaan lebih rendah klon daripada tanaman asal biji (benih), tetapi pada usia tanaman 30 bulan, ternyata bunga betina klon lebih - banyak daripada tanaman asal biji (benih). Sex-ratio pada klon 89.1% 93.9% berbanding 76.3% 85.1% pada tanaman asal biji (benih). - * Bunga androgunaeus ditemukan pada klon maupun benih, tetapi akan menghilang setelah tanaman berusia 30 bulan. - * Bunga banci persentasenya lebih tinggi pada klon dibandingkan benih, tetapi bunga ini akan menghasilkan Tandan Buah Segar (TBS) normal. - * Klon mempunyai prekositas yang lebih cepat daripada tanaman asal biji (benih). # 3.2.2. Produksi Tandan Buah Segar (TBS) Klon dilapangan dapat dilihat pada Tabel 2 dan Tabel 3. Tabel 2. Produksi Tandan Buah Segar (TBS) Klon dan Benih di Kebun Bah Jambi Afd. IV, PT Perkebunan VII selama Tahun Pertama Panen Penanaman : September 1987 | No.
Percob. | Klon | Jumlah
TBS | Berat rata-
rata TBS | TBS
kg/pokok | Ton/ | |----------------|-----------|---------------|-------------------------|-----------------|-------| | ВЈ 14 | MK : 01 * | 30.7 | 4.14 | 127.2 | 16.54 | | | Seedling | 21.3 | 4.98 | 106.2 | 13.80 | Tabel 3. Produksi Tandan Buah Segar (TBS) Klon dan Seedling di Kebun Tinjowan, PT Perkebunan VI selama Tahun Pertama Panen. Penanaman: Oktober 1987 | No.
Percob. | Klon | Jumlah
TBS | Berat rata-
rata TBS | TBS
kg/pokok | Ton/
ha | |----------------|----------|---------------|-------------------------|-----------------|------------| | TI 18 | MK : 01 | 26.2 | 4.43 | 116.9 | 15.20 | | | Seedling | 24.5 | 4.20 | 105.3 | 13.68 | Dari data pada Tabel 2 dan Tabel 3 dapat dijelaskan sebagai berikut: - * Jumlah Tandan Buah Segar (TBS) yang dihasilkan klon pada Pecobaan No. BJ 14 maupun Percobaan No. TI 18 lebih banyak dari pada tanaman asal biji (benih). - * Berat rata-rata Tandan Buah Segar (TBS) pada Percobaan No. BJ 14 lebih tinggi pada tanaman asal biji (4.98 kg) dibandingkan klon (4.14 kg), sedangkan pada Percobaan No. TI 18 lebih tinggi pada klon (4.43) dibadningkan tanaman asal biji (4.20 kg). Berat tandan berkaitan jumlah tandan yang dihasilkan. - * Produksi tandan pada klon/ha selama satu tahun panen di PT Perkebunan VII, Kebun Bah Jambi lebih tinggi 2.74 ton dibandingkan tanaman asal biji (benih). - * Produksi tandan pada klon/ha selama satu tahun panen di PT Perkebunan VI, Kebun Tinjowan lebih tinggi 1.52 ton dibandingkan tanaman asal biji (benih). - * Untuk mengantisipasi kemungkinan timbulnya abnormalitas pada klon, maka telah ditetapkan 3 cara yaitu: - * Membatasi umur kalus dalam kultur berdasarkan asumsi bahwa abnormalitas dapat timbul akibat kandungan hormon terlalu tinggi di dalam jaringan. - * Cryopreservation sebelum produksi massal sambil menunggu pembuktian konformitas klon dari lapangan. - * Setiap kali melakukan recloning pada klon yang sudah teruji baik. #### 4. KOMERSIALISASI Di dalam usaha produksi dan pemasaran klon secara komersial, maka Pusat Penelitian Perkebunan Marihat telah menyusun program sesuai dengan jadwal yang dibutuhkan sebagai berikut: 1985 - 1986 : Pembangunan laboratorium, training teknisi dan lain-lain. 1987 - 1988 : Evaluasi ortet dan pengujian adaptasi klon dilapangan, aklimatisasi klon dibibitan, produksi stock embryo di laboratorium. 1989 - 1991 : Promosi klon, menjual klon sesuai dengan harga produksi. Promosi ini berja,an lancar 1992 -: Akan dilaksanakan produksi dan pemasaran klon secara komersial. #### 5. KESIMPULAN Hasil pengamatan dilapangan menunjukkan bahwa pertumbuhan vegetatif maupun pembungaan klon yang diperoleh melalui proses embryogenesis somatik normal. Bunga endrogynaeus pada awal pembungaan klon jauh lebih tinggi daripada tanaman asal biji (seedling), tetapi akan berkurang selaras dengan pertambahan usia tanaman dilapangan. Sex-ratio pada klon lebih tinggi daripada pada tanaman asal biji (benih) dan hal ini merupakan indikasi bahwa jumlah tandan klon akan lebih banyak daripada tandan yang berasal dari benih. Pada tahun pertama panen dapat diperoleh 15.20 sampai 16.54 ton tandan per ha, berarti kenaikan produksi 13% sampai 20%. Hal ini sangat berarti bagi peningkatan produksi pada Perkebunan Kelapa Sawit di Indonesia. Pada skala komersil dianjurkan agar penanaman dalam bentuk polyklonal dengan menyisipkan beberapa klon yang diketahui pada umur muda menghasilkan serbuk sari banyak, guna mencegah kekurangan tepung sari karena sex-ratio yang tinggi pada umur muda. Dari hasil pengamatan dilapangan, baik vegetatif, pembungaan maupun produksi Tandan Buah Segar (TBS), maka The second second second rencana produksi dan pemasaran klon secara komersil mulai tahun 1992 akan dapat direalisasikan. #### 6. DAFTAR PUSTAKA - Durand, T.G. 1989. Floral morphogenesis abnormalities observed in oil palm ramets. IRHO-LaMe. - Duval, T.G. Durand, K. Kohan and C. Pannetier. 1987. In vitro vegetative propagation of oil palm (Elaeis guineensis Jacq). Strategy and Results. International Oil Palm/Palm Oil Confrence, Kuala Lumpur. - Lubis, A.U., G. Ginting. 1985. Perbanyakan vegetatif melalui kultur jaringan pada kelapa sawit di Indonesia. Seminar Kultur Jaringan, Perjati Jakarta. - Kusnadi, T., G. Samaritaan. 1990. Pembungaan dan produksi awal pada tanaman kelapa sawit (E. guineensis Jacq) yang dihasilkan melalui proses embryogenesis somatik di Socfindo. - Noiret, J.M. 1981. Aplication of in vitro culture in improvement and production of clonal material in the oil palm. Oleagineux, 36 IRHO France. - Pannetier, C., Arthuis, P. and Lievoux, D. 1981. Neoformation of young *Elaeis guineensis* planlets from primary calluses obtained on leaf fragments cultured in vitro Oleagineux, 36 IRHO - France. and the second of the second of the second Anonymous. 1990. Rumusan hasil pertemuan terbatas kultur jaringan kelapa sawit antara RCEC-Marihat RCEC Medan, RCEC-Bogor, AP3I, IPB-Bogor dan PT Socfindo-Medan di Puslitbun Marihat. 26 - 27 September 1990. #### Lampiran 1. Daftar Pemilihan Ortet "Klone" Mark: 10 | | | Identifica
Progency T | | | | |--------------|----------|--------------------------|------------------|----|----------| | Trial
No. | Division | Progency | Year of planting | | Main row | | BO 011S | VII | BJ 75/74/SS | 1976 | 84 | 74 - 11 | #### I. Blck-characteristic | Bunch production/year | | | | | | | |-----------------------|-----------------|-------------|----------------------|--|--|--| | Age | No. of
bunch | ABW
(kg) | Total
FFB
(kg) | | | | | 6-7 years | 14.0 | 14.4 | 205:4 | | | | | | Bunch analysis | | | | | | | |----------|----------------|----------|----------|-----|---------|-----|--| | %
F/B | %
P/F | %
O/P | %
O/B | K/F | FW (gr) | UFA | | | 56.9 | 83.6 | 56.2 | 26.7 | 7.0 | 12.9 | | | #### II. Progeny-characteristic | Bunch production/year | | | | | | |-----------------------|-----------------|-------------|----------------------|--|--| | Age | No. of
bunch | ABW
(kg) | Total
FFB
(kg) | | | | 6-7 years | 17.1 | 14.3 | 243.7 | | | | Bunch analysis | | | | | | | |----------------|----------|----------|----------|-----|------------|-----| | %
F/B | %
P/F | %
O/P | %
O/B | K/F | FW
(gr) | UFA | | 56.8 | 88.0 | 58.7 | 29.3 | 5.6 | 16.6 | | #### Clone-characteristic | Bunch production/year | | | | | | | |-----------------------|-----------------|-------------|----------------------|--|--|--| | Age | No. of
bunch | ABW
(kg) | Total
FFB
(kg) | | | | | 6-7 years | 19.5 | 16.3 | 318.0 | | | | | Bunch analysis | | | | | | | |----------------|----------|----------|----------|-----|------------|----------| | °F/B | %
P/F | %
O/₽ | %
O/B | K/F | FW
(gr) | UFA | | 55.7 | 89.2 | 61.7 | 30.7 | 5.1 | 18.8 | <u>-</u> | ### Bunch production/year | Industrial production | Indu | strial | production | |-----------------------|------|--------|------------| |-----------------------|------|--------|------------| | Age | Total
no. of
bunch | ABW
(kg) | | | | |-----|--------------------------|-------------|--|--|--| | 3 | 28 | 7.6 | | | | | 4 | 16 | 10.9 | | | | | 5 | 17 | 21.1 | | | | | 6 | 21 | 14.2 | | | | | 7 | 18 | 18.8 | | | | | Growth c | m/year | | | | | | | | |----------|--------|--|--|--|--|--|--|--| | 54 | | | | | | | | | |
% of
oil
extract
ion | Oil per
tree
(kg) | Oil
kg/ha | Total
trees
per ha | | | |-----------------------------------|-------------------------|--------------|--------------------------|--|--| | 26.2 | 83.32 | 10.665 | 128 | | | | | | 11.915 | 143 | | | Lampiran 2. Daftar Progeny Yang Digunakan | P | roge | nу | ٠, ٠ | | | | FBB
kg/tree | % of oil extraction | Growth
(cm/year) | |----------|------|---------|------|----------|-----|--------------|----------------|---------------------|---------------------| | T.M | 274 | SŲ | v | TM | 239 | OΡ | 100 | | | | BJ | 013 | ZD
D | X | | | | 180 | 25.1 | 68.2 | | ĎS | 029 | D | X | RS | 011 | | 213 | 24.3 | 75.9 | | DS | 029 | D | X | LM | | P | 180 | 24.8 | 64.8 | | ŤΙ | 242 | D | X | BJ | | ъ | 205 | 22.8 | 60.7 | | MA | 284 | Ď | X | | | P
P | 188 | 25.7 | 74.6 | | ĎS | 029 | Ď | | DS | | | 218 | 24.0 | 76.1 | | LM | 270 | D | Χ | LM | 076 | P | 195 | 25.7 | 78.7 | | ВJ | 169 | D | X | | - | P | 201 | 24.3 | 70.0 | | MA | 284 | D | X | RS
MA | 014 | Þ | 225 | 25.1 | 66.2 | | ΤI | 221 | D | | | 315 | P | 207 | 23.9 | 77.7 | | GB | 030 | D | X | | 004 | Ť | 229 | 24.5 | 82.5 | | ВJ | 170 | | | RS | 004 | T | 223 | 24.4 | 80.6 | | DS | 155 | D | | RS | 007 | T | 215 | 23.5 | 76.3 | | ΤΊ | 230 | D | Х | RS | 001 | T | 196 | 22.7 | 94.9 | | | | D | X | | 020 | T | 215 | 23.9 | 82.0 | | DA
PA | 128 | D | X | | 239 | T | 210 | 24.6 | 71.4 | | | 123 | D | Х | BJ | 221 | P | 206 | 23.9 | 90.5 | | DA | 128 | D | X | LM | 7 T | | 225 | 22.4 | 67.6 | | BJ | 129 | D | | LM | 2 T | | 216 | 22.7 | 72.1 | | DA | 128 | D | X | | • | | 218 | 23.2 | 70.0 | | | 270 | | | | 238 | T | 210 | 23.7 | 68.3 | | DS | 029 | | | LM | 7 T | نــ | 206 | 23.2 | 76.2 | | PΑ | 131 | D | | RS | 003 | P | 217 | 23.8 | 83.6 | | PA | 131 | D | | MA | 321 | P | 222 | 23.3 | 78.8 | | BJ | 126 | D | X | LM | 2 T | | 227 | 22.6 | 75.1 | | ΤI | 241 | D | X | RS | 003 | \mathbf{T} | 220 | 22.4 | 80.9 | | GB | 006 | D | Х | RS | 023 | P | 216 | 22.3 | 65.7 | | BJ | 162 | D | | RS | 007 | ${f T}$ | 202 | 25.0 | 72.0 | | DS | 139 | D | X | NI | 002 | P | 193 | 24.1 | 77.4 | | ВJ | 019 | Ď | Х | YO | 4 T | | 206 | 25.9 | 54.9 | | MA | 284 | D | X | LM | 312 | P | 248 | 21.5 | 64.0 | | DS | 029 | Ď | X | LM | 451 | P | 220 | 24.3 | 58.8 | | DS | 155 | D | Х | NI | 002 | P | 211 | 23.9 | 59.3 | | ВJ | 42 | D | X | LM | 451 | \mathbf{T} | 204 | 24.0 | 51.2 | | TI | 006 | D | X | RS | 012 | \mathbf{T} | 200 | 24.7 | 64.2 | | PA | 151 | Ď | X | RS | 800 | \mathbf{T} | 206 | 25.0 | 78.9 | Situasi Kultur Di dalam Laboratoirum (Nopember 1991) Lampiran 3. | | | | i* | | | | | | | | | |---|--|----------------------------|---|--|---|--|---|---|---|--|--------------------------| | (| Cross | | | No. of | Tahap | | | | | | | | | | | | Ortet | 10 | 20 | 22 | 41 | 42 | 50 | 61 | | LBDDTMDLBMTGBDTDPDBDLDPPBTGBMRRTDMBBMDRDBBTPDBBDDLDPPBTGBMRRTDMBBMDRDBBTPDBBDDLDPPBTGBMRRTDMBBMDRDBBTPDBBDD | DDDDDDDDDDDDDDDDDDDTTDDD D DDDDDDDDDDD | RS
RS
RS
LM
LM | P P PPPPPTTTTTTP T PP TPTDTTTPP PPTPTTTP 99T1T0369454471091TTTBT31T337018726FT2102142812TP 371 21731100002272927032000030080244340040004352 2702230203000000030080244340040004352 | 123325285333219526245511511011114152311131323221 | 111111111111111111111111111111111111111 | 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 111111111111111111111111111111111111111 | 1 | 1922 11432212114161324 12 111 1 1 1 1 1 1 1 | 1122121532212124151424112111111111111111 | 1122 21432322113151324 | | | 155 D X
o t a l | 1/1 | & E | 165 | 25 | 57 | 16 | 20 | 1
73 | · | | Catatan: tahap 10 = sumber jaringan tahap 20 = kalus tahap 22 = kalus dan embryo tahap 41 = embryo