PRESENCE OF hema-Like and hemT-LIKe genes in a number of ANOXYGENIC PHOTOSYNTIIETIC BACTERIALISOLATES FROM INDONESIA AND SOIL SAMPLES FROM BOGOR AREA

NURUL AINI'AND ANTONIUS SUWANTO ${ }^{1.2 .1}$
${ }^{1}$ Laboratory of Microbiology and Biochemistry, Inter University Centre for Biotechnology, Bogor Agricultural University, Bogor-16680 Indonesia
${ }^{2}$ Department of Biology, Faculty of Science and Mathematics, Bogor Agricultural University, Bogor 16144, hindonesia.
${ }^{\text {'South-East Asian Regional Center for Tropical Biology, Bogor-16001, Indonesia. }}$

Abstract

The Rhodobacter sphaeroides hem A and hemT are known to encode a distinct s-aminolevulinic acid (ALA)-synthase isozyme. This enzyme catalyzes the first and rate limiting step in ALA biosynthesis through the C_{\perp} pathway. This study was carried out to detect hemA-like and hemT-like genes in twenty Anoxygenic Photosynthetic Bacterial (AP13) isolates from several wethand areas in Indonesia, and four DNA samples that were isolated from four soil samples obtained from Bogor area. Itybridization techniques of Southern and dot blot were used, using hemA and hem 7 fragment as probes. Southern hybridization analyses indicated the presence of hemA-like gene in five of APB isolates, i.e., MB15, MB16. MB21.2, MB5S and MB6, whereas hemT-like gene was detected only in MBis. Dot blot hybridization analyses suggested that the soil samples from waterlogged paddy-field, dry paddy-field as well as a mud pond were predominantly occupied by prokaryotic organisms which harboured hemA-like gene. However, hemT-like sequences were also found in soil sample from dry paddy-field.

Key words: hemA-like gene / hem T-like gene / Southern hybridization analysis / dot blot hybridization analysis.

INTRODUCTION

The Rhodobacter sphaeroides hemA and hemT genes encode a distinct 5aminolevulinic acid (ALA) synthase isozyme (Neidlc \& Kaplan 1993). ALAsynthase catalyzes the first and rate-limiting step in ALA biosynthesis through the C_{4} pathway. ALA is the first committed precursor in the common tetrapyrrole pathway (Goodwin \& Mercer 1986; Beale \& Weinstein 1991; Beale 1995). Recently, ALA has received attention as a new biodegradable herbicide (Sasaki et al. 1987) and insecticide (Sasaki et al. 1990).

The DNA sequences of hemA and hemT genes and their location on R. sphacroides physical map have been determined. The hemA gene is located on the large chromosome whereas hem T gene is found on the small chromosome (Neidle \& Kaplan 1993a). The hemA and hem 7 'genes encode peptides that are 53% similar to each other, and these peptides are also significantly similar to ALA-synthase from several bacteria and eucaryotic species (Neidle \& Kaplan 1993). The hemA fragment has been cloned in R. sphaeroides (Tai et al. 1988) as well as in Escherichia
coli (Werf \& Zeikus 1996). The cloned hemA fragment is expressed well in E. coli and able to enhance ALA production (Werf \& Zeikus 1996). This evidence shows that hemA can be used as a genetic material for enhancing ALA production.

Since hemA and hemT genes have high homology to gene encoding ALAsynthase from other organisms, hem A-like and hem T-like genes might be found in other bacteria that form ALA through the C_{4} pathway. In this study, we detected the presence of hemA-like and hemT-like genes in Anoxygenic Photosynthetic Bacterial (APB) isolates, because most member of APB use the C_{4} pathway to produce ALA. Soil, especially paddy-field soil, is known as a common habitat of APB (Habte \& Alexander 1980: Gest et al. 1985). Therefore, we also carried out an experiment to detect these genes in four soil samples. The results of this study would be expected to generate some insights on the distribution and population density of APB as well as R. sphaeroides strains. In addition, the specificity of hem T would be assessed to be used as a specific molecular marker for R. sphaeroides isolates.

MATERIALS AND METHODS

Bacterial strains, plasmids, growth conditions and soil samples

The bacterial strains and plasmids used are listed in Table 1. APB isolates were grown photoheterotrcphically in Sistrom's minimal medium (Lueking et al. 1978) in full filled screw-cap tubes, pH 7.2 . E. coli were grown at $37^{\circ} \mathrm{C}$ in Luria Bertani (LB)

Table 1. Bacterial strains and plasmids

Bacteria and strains or plasmids	Relevant characteristics	Reference
APB isolates:		
MB2	Wild type, from Central Kalimantan	Irawan et al. (1998)
MB6	Wild type, from Central Kalimantan	Irawan er al. (1998)
MB7	Wild type, from Central Kalimantan	Irawan et al. (1998)
MB11.1	Wild type, from Central Kalimantan	Irawan et al. (1998)
MB12.2	Wild type, from Central Kalimantan	Irawan et al. (1998)
MB15	Wild type, from Bogor	Irawan et al. (1998)
MB16	Wild type, from Pangandaran	Irawan et al. (1998)
MB18	Wild type, from Ciwaluya	Irawan et al. (1998)
MB19	Wild type, from Bogor	Irawan et al. (1998)
MB21.I	Wild type, from Ciamis	Irawan et al. (1998)
MB21.2	Wild type, from Ciamis	Irawan et al. (1998)
MB22	Wild type, from Pontianak	Irawan et al. (1998)
MB23	Wild type, from Ujung Kulon	Irawan et al. (1998)
MB28	Wild type, from Ujung Kulon	Irawan et al. (1998)
MB31	Wild type, from Ujung Kulon	Irawan et al. (1998)
MB39	Wild type, from Merauke	Irawan et al. (1998)
MB54	Wild type, from Jambi	Irawan et al. (1998)
	Wild type, from Jambi	Irawan et al. (1998)

Presence of hemA-like and hemT-like genes - Nurul Aini \& Antonius Suwanto

Table 1. Continued

Bacteria and strains or plasmids	Relevant characteristics	Reierence
MC1	Wild type, from Kotorayo Wild type, from Central Kalimantan	Irawan et al. (1998) IW12
	Irawan et al. (1998)	

(Sambrook et al. 1989) supplemented as needed with antibiotics. Antibiotics were added at the following concentrations: $100 \mu \mathrm{~g}$ Ampicillin $/ \mathrm{ml}$ (for maintaining pUC19, pUII004, pUII014, and pUI612), $25 \mu \mathrm{~g}$ Chloramphenicol/ml (for maintaining pHF1.1). Soil samples were taken from waterlogged paddy-field, dry paddy-field, LSI pond and Grawida yard, Bogor Agricultural University, Darmaga Campus. All sampling areas were located at Darmaga, Bogor. The description of the soil samples are listed in Table 2.

Table 2. Soil samples

No.	Sampling Location	Soil Description
1.	Waterlogged paddy field	Dark brown, waterlogged, sandy, t: $27^{\circ} \mathrm{C}$
2.	Dry paddy field	Dark brown, dry, finely granulated, porous, t: $29^{\circ} \mathrm{C}$.
3.	LSI pond	Dark brown, silt, t: $26^{\circ} \mathrm{C}$
4.	Grawida Yara	Red brick, massive, clayey, t: $29^{\circ} \mathrm{C}$

DNA isolation

Plasmids DNA were isolated by using Wizard Miniprep DNA Purification System (Promega, Wisc.) according to the manufacturer's instruction. Genomic DNA was extracted from each APB isolate using the phenol extraction method with slight modification as follows. The cell pellet was suspended in EDTA solution containing 15 mg lysozyme $/ \mathrm{ml}$, and incubated at $37^{\circ} \mathrm{C}$. for 1 hour. The lysis was accomplished by adding $300 \mu \mathrm{l}$ SDS buffer ($0.1 \mathrm{M} \mathrm{NaCl} ; 4 \%$ SDS; 0.5 M Tris- HCl , pH 8). The extract was freeze-thawed. The DNA was phenol-extracted and ethanol-
precipitated as in standard protocol (Sambrook et al. 1989). The E. coli genomic DNA was isolated as described previously (Leach et al. 1994).

The DNA was extracted from soil by using modified Tiedje Method (Keller 1997, unpublished). The soil sample (i 0 g) was finely grinded. The 5 g grinded soil was mixed with 13.5 ml Tiedje buffer (100 mM Tris-HCl, pH 8; 100 mM Na EDTA, pH $8 ; 100 \mathrm{mM} \mathrm{Na}_{2} \mathrm{PO}_{4}, \mathrm{pH} 8 ; 1.5 \mathrm{M} \mathrm{NaCl} ; 1 \%$ CTAB) in 100 ml centrifuge tube, and freeze-thawed 3 x . After freeze-thawing, $100 \mu 1$ proteinase-K ($20 \mathrm{mg} / \mathrm{ml}$) (Sigma, Singapore) was added and incubated at $37^{\circ} \mathrm{C}$ for 30 minutes, then 10 ml 10% SDS was added and incubated at $65^{\circ} \mathrm{C}$ for 2 hours. The mixture was centrifuged at 6000 g for 10 minutes. The supernatant was extracted with 1 volume ${ }^{-}$ of chloroform (Merck, Jakarta) and centrifuged at 6000 g for 1 minute. The aqueous phase was transferred to a new 100 ml centrifuge tube and 0.6 volume of isopropanol (Merck, Jakarta) was added at room temperature. The DNA was recovered by centrifugation at $16,000 \mathrm{~g}$ for 20 minutes at $4^{\circ} \mathrm{C}$. The supernatant was discarded and the pellet was washed with 70% ethanol. The DNA was dried at room temperature and dissolved in $100 \mu \mathrm{IE}$ buffer (0 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8 ; 1 \mathrm{mM}$ EDTA).

Southern hybridization analysis

The 1.2 kb BamHI (NEB, Singapore) fragment from pUII014 and 1.8 kb BamHI (NEB, Singapore) fragment from pU11004 were isolated for preparing hem A and hem T probes. The fragments were purified from agarose gel using the Gene Clean Kit (Bio 101 Inc, La Jolla, Calif.), and labeled with biotin-14-ATP using Nick Translation System (GIBCO/BRL, Grand Island, NY) according to the manufacturer's instruction. The unincorporated nucleotides were removed from the probes with nuctrap push columns (Stratagene, La Jolla, Calif.).

The genomic DNAs extracted from APB isolates were digested with EcoRI (NEB, Singapore), except the DNA from MB15 isolate, which was digested with BamHI (NEB, Singapore). Digestions were performed in appropriate buffer at $37^{\circ} \mathrm{C}$ for 12 hours. The digested DNA was electrophoretically separated. The DNA fragments were transferred to a nylon membrane (Photogene, GIBCO/BRL, Grand Island, NY) by capillary action with standard method (Sambrook et al. 1989). Hybridization was carried out as described previously at $42^{\circ} \mathrm{C}$ for 12 hours (Sambrook et al. 1989), followed by washing at $37^{\circ} \mathrm{C}$ for 2×15 minutes each, and - detection using a chemiluminescent method (Photogene Detection System, GIBCO/ BRL, Grand Island, NY).

Dot blot hybridization analysis

Four biotinilated DNA probes, i.e. hem A, hem T, $p u c B A$, and 16 S rRNA genes were used. The probes were prepared as described above. To avoid bias in calculation, the population density of prokaryotes was based on the same amount of soil samples, and not on the same amount or standardization of DNA concentration. DNA isolated from soil samples were denatured as described previously (Keller and

Manak 1992), and applied to nylon membrane (Photogene, GIBCO/BRL, Grand Island, NY) by spotting directly onto the membrane. High stringency hybridization and washing conditions were used. Hybridization was carried out at $42^{\circ} \mathrm{C}$ for 12 hours, with washing temperature of $55^{\circ} \mathrm{C}$ (Sambrook et al. 1989). Detection was done using the Photogene Detection System (GIBCO/BRL, Grand Island, NY).

RESULTS AND DISCUSSION

Southern hybridization analyses

Southern hybridization analyses were performed to determine the presence of hem A-like and hem T-like genes in twenty APB isolates from Indonesia (Table 1). R. sphaeroides 2.4.1 (Rsp 2.4.1) hemA and hem T genes were used as probe. The analyses identified some homologous regions the homology to hemA in the genomic DNA of MB6, MB15, MB16, MB21.2 and MB55. The region of homology to hemA probe in the genomic DNA of each APB isolate is shown in Figure 1a, lanes 3-7. The hemT probe hybridized only to 4.8 kb BamHI fragment in MB15 genomic DNA (Fig. 1b, lane 3).

A

Figure 1. A. Southern hybridization analyses using hemA probe.
Lanes (1) Rhodobacter sphaeroides 2.4.1, (2) λ BstEII, (3) MB15, (4)MB1́́, (5) MB21.2, (6) MB55, and (7) MB6
B. Southern Hybridization analyses using hemT probe Lanes (1) Rhodobacter sphaeroides 2.4.1, (2) λ BstEII, and (3) MB15

The results implied the presence of hemA-like gene in MB6, MB15, MB16, MB21.2 and MB55, whereas hemT-like gene was only implied in MB1s. The presence of hemA-like and/or hem T-like genes in the five AFB isolates indicates the ALA biosynthesis in these APB isolates is employed through the C_{4} pathway, because the C_{4} pathway is mediated by ALA synthase which encoded by hemA and/or hemT genes. Moreover, the presence of hemA-like and/or hemT-like genes in the five APB isolates indicates that these APB isolates could be classified under sub group α-proteobacteria. In photosynthetic bacteria, C_{4} pathway is utilized by purple non-sulfur bacteria, especially sub group α-proteobacteria (Avissar et al. 1989; Beale 1995). The sub group α-proteobacteria contains species of genera Rhodospirillum, Rhodopila, Rhodopseudomonas, Rhodomicrobium and Rhodobacter (Imhoff 1995).

Neither hemA-like gene nor hem T-like gene was identified in the other 15 APB isolates. The data suggested that the C_{4} pathway is not utilized by these APB isolates to produce ALA. The 15 APB isolates might produce ALA through C_{s} pathway, which does not require ALA synthase. These APB isolates used are not the member of sub group α-proteobacteria, although all APB isolates studied here belong to purple non-sulfur bacteria.

The hemT-like gene was only identified in MB15. This APB isolate also carries hemA-like gene. Interestingly, the hemA-like gene in MB15 was detected on the same locations with Rsp. 2.4.1 hemA, i.e., at 1.2 kb and 2.4 kb BamHI fragments (Fig. la, lane 1 and 3). The strong intensity of the hybridization signals revealed that the similarity between MB15 hemA-like gene and Rsp.2.4.1 hemA was very high. Moreover, the color comparison of MB15 culture with Rsp. 2.4.1 culture also showed a high similarity. Based on these findings, it is very likely that MB15 was Rhodobacter sphaeroides. We tentatively conclude that hem T-like gene harbors specifically in R. sphaeroides. Neidle and Kaplan (1993) reported that the R. sphaeroides is the only bacterial species that produces two ALA synthase isozymes. However, previously ALA synthase isozymes are found in some vertebrates (Dierks 1990), while no previous information on bacterial ALA synthase isozymes have been reported.

Dot blot hybridization analysis

Dot blot hybridization analysis was employed to detect the presence of hemAlike and hemT-like genes in DNA extracted from four soil samples (Table 2). Four DNA probes, i.e., hemA, hemT, pucBA, and 16S rRNA gene were used. This analysis also revealed the relationship of the activity of prokaryote and APB in the soil samples with the presence of hemA-like and hem T-like genes.

Figure 2 shows the results of dot blot hybridization using the four probes. Interpretation of these results is described in Table 3. Based on the hybridization using hemA probe (Fig. 2a), the presence of hemA-like gene was detected in soils taken from waterlogged paddy field, dry paddy field and LSI pond. The presence of hemA-like gene in these soil samples indicates the activity of organisms producing

ALA through the C_{4} pathway. The C_{4} pathway is utilized by animals, fungi, protozoa and sub group α-proteobacteria (Avissar et al. 1989; Beale \& Weinstein 1991; Beale 1995).

Figure 2. Dot blot hybridization analyses using hemA (A), hemT (B), 16 S rRNA (C), and pucBA (D) as probes. Dots (1) Rhodobacter sphaeroides 2.4.1., (2) soil sample from. waterlogged paddy field, (2) soil sample from dry paddy field, (3) soil sample from LSI pond, and (5) soil sample from Grawida yard

Table 3. Interpretation of the result of dot blot hybridization

No.	Soil Samples		Interpretation of Dot Blot Hybridization Results		
		hemA	hemT	Prokarydte	APB
1	Waterlogged paddy field	++	-	++	++
2	Dry paddy field	+++	++	+++	+++
3	LSI pond	+	-	+++	+
4	Grawida Yard	-	-	+	+

+ : Detected
_ : Not detected
The number of $(+)$ represent the degree of intensity of hybridization signal

Using 16 S rRNA probe, we identified the presence of prokaryotic microorganisms in all four soil samples (Fig. 2c). The results of hybridization to pucBA probe indicated that the APB could be detected in all soil samples (Fig. 2d). Thus, it is possible to find the α-proteobacteria in the soil samples, because some members of α-proteobacteria are classified as APB group. The possibility for the α-proteobacteria to exist in the four soil samples correlates with the presence of hemA-like gene in these soil samples. However, in spite of the detection of the APB activities in soil from Grawida yard, hem A-like gene was not found in this soil. The intensity of hybridization signal to both 16 S rRNA (Fig. 2c) and pucBA (Fig. 2d) probes shows that the population densities of both prokaryote and APB in soil from Grawida yard are much lower than those found in the other three soil samples. The α-proteobacteria might not exist in the soil from Grawida yard or the α proteobacteria were actually present in this soil, but the population density is very low. Therefore, presence of hemA-like gene could not be detected. Soils obtained from waterlogged paddy field, dry paddy field and LSI pond were found to have high population density of prokaryotes and APB. The high population density of APB enables the α-proteobacteria to proliferate. The presence of hem A-like gene in these soil samples is related to the population density of APB. The population density of APB as well as other microorganisms in the soil is dependent on the availability of growth nutrient, O_{2} and water (Brock \& Madigan, 1991). The fertility and the soil texture are responsible for the availability of these factors. Therefore, the presence of hemA-like gene in soil is indirectly affected by the fertility and the soil texture

Based on the results of hybridization to hemA probe, the hemA-like gene might be present in the soil taken from APB habitat. In nature, APB occur in moist soil, paddy field, sewage water, fresh water, brackish water, waste water, marine habitat and in extreme condition of the Antartic (Sasikala et al.1985). The presence of hem A-like gene in the soil is related to the fertility of the soil, because the availability of growth nutrient affects APB growth.

The dot blot hybridization using hem T probe identified the presence of hemTlike gene only in soil taken from dry paddy field (Fig. 2b, dot 3). By comparing the intensity of hybridization signal to hem T probe with the hybridization signal to hem A probe, it is clear that the homologous sequence to hem T probe is present in relatively fewer amount than the homologous sequence to hemA probe. The results indicate that not all organisms carrying hem A-like gene also carry the hem T-like gene. These findings confirm the data obtained from Southern hybridization analyses that the presence of hem T-like gene is more specific than that of hemA-like gene. The hem T or hem T-like gene might be specific to R. sphaeroides. However, further studies to determine the nature of specificity of hem T or hem T-like gene to R. sphaeroides should be carried out to develop in situ hybridization method to examine directly the distribution and density of R. sphaeroides in the soil or water ecosystem.

ACKOWLEDGMENTS

This research was supported by a Competitive Grant (Hibah Bersaing V, grant 08/P21 PT/DPPM/96/PHBV/I/V/1996) to Antonius Suwanto.

REFERENCES

Avissar, Y.J., J. Ormerod, and S.I. Beale. 1989. Distribution of δ-aminolevulinic acid biosynthetic pathway among photosynthetic bacteria and related organism. Arc. Microbiol. 151: 513-519.
Beale, S.I. 1995. Biosynthesis and structure of porphyrine and hemes. In: R.E. Blakenship, M.T. Madigan, and C.E. Bauer (eds). Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publisher. Netherlands. p. 847-870.
Beale, S.I., and J.D. Weinstein. 1991. Biosynthesis of of δ-aminolevulinic acid in phototropic organism. In: H. Scheer (ed). Chlorophylls. CRC Press. Boca Raton. p. 368-392.
Brock, T.D., and M.T. Madigañ. 1991. Biology of Microorganism. Prentice-Hall international Inc. USA. p. 566-569, 703-726.

Dierks, P. 1990. Molecular biology of eukaryot 5-aminolevulinate synthase. In H.A. Dailey (ed). Biosynthesis of hemes and chlorophylls. McGraw-Hill. New York. p. 210-234.
Gest, H., J.L. Favinger, and M.T. Madigan. 1985. Exploitation of N_{2} fixation capacity for entichment of anoxigenic photosyntetic bacteria in ecological studics. FEMS Microbiol. Ecol. 31: 317-322.
Goodwin, T.W., and E.I. Mercer. 1986. Introduction to Plant Biochemistry. Pergamon Press. Oxford. p. 465-467.

Habte, M., and M. Alexander. 1980. Nitrogen fixation by photosynthetic in lowland rice culture. Appl. Environ. Microbiol. 39: 342-347.
Imhoff, J.F. 1995. Taxonomy and physiology of photosynthetic purple bacteria and green sulfur bacteria. In: R.E. Blakenship, M.T. Madigan, and C.E. Bauer (eds). Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publisher. Netherland. p. 1-15.
Irawan, A. Suwanto, P.D. Tjondronegoro. 1998. Isolation and screening of anoxygenic photosynthetic bacteria producing extracellular L-aminolevulinat acid. Hayati. 5: 98-102.
Keller, G.H., and M.M. Manak. 1992. DNA Probes. Stockton Press. UK. p. 1-16.
Kiley, J. P, and S. Kaplan. 1987. Cloning DNA sequence and expression of the Rhodobacter sphaeroides light-harvesting B800-850- α and B800-850- β genes. J. Bacteriol. 169: 3268-3275.
Leach, J. E., F.F. White, M.L. Rhoads, and H. Leung. 1994. A repetitive DNA sequence differentiates X. campestris p.v. oryzae from other patovar of X. campestris. Mol. Plant-Microb. Interact. 98: 238246.

Leuking, D.R., R.T. Faley, and S. Kaplan. 1978. Intracytoplasmic membrane synthesis in synchronous cell population of Rhodopseudomonas sphaeroides. J. Biol. Chem. 253: 451-457.
Neidle, E.L., and S. Kaplan. 1993. Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymcs. J. Bacteriol. 175: 2292-2303.
Sambrook, J.E., F. Fritsch, and T. Maniatis. (1989). Molecular Cloning. Cold Spring Harbor Laboratory Press. USA. p. 9.31-9.58.

BIOTROPAA NO. 15, 2000

Sasaki, K... S. Ikeda, Y. Nishizawa, and M. Hayashi. 1987. Production of 5 -aminolevulinic acid by photosynthetic bacteria. J. Ferment. Teclmot. 65: 511-515.
Sasaki, K., N. Noparatnaraporn, S. Nagai. 1990. Production of 5 -aminolevalini~ acid as a herbicide fitom swine waste by Rhodobacter sphaeroides. Ann. Rep. IC Biotech. 13: 277-281.
Sasikala, K., Ch. V. Ramana, P.R. Raghurcer, and K.L. Kovacs. 1985. Anoxygenic photosynthetic bacteria: physiology and advances in hydrogen production lechnology. Adv. App. Microbiol. 28: 211-295
Schleifer, K.H., W. Ludwig, J. Krauss, and H. Fcstl. 1985. Cloned ribosomal RNA genes from Pseudomonas aeruginosa as probe for conserved deoxyribonucleic acid sequences. Int. J. Syst. Bact. 38: 231-237.
Suwanto, A., and S. Kaplan. 1989. Physical and genetic mapping of the Rhodohacter sphaeroides 2.4.1 genome: presence of two unique circular chromosomes. J. Bacteriol. 171: $5850-5859$.
Tai, T.N., M.D. Moore, and S. Kaplan. 1988. Cloning and Characterization of the 5 -aminolevtinic synthase gene(s) from Rhodnbacter sphaeroides. Gene. 70: 139-151.
Werf, M. J., and J. G. Zeikus. 1996. 5-Aminolevulinat production by Escherichia coii containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microbiol. 62: 3560-3566.

