Nuclear Replacement of In Vitro-Matured Porcine Oocytes by a Serial Centrifugation and Fusion Method

N Maedomari 1,2,* , K Kikuchi 1 , T Nagai 3 , M Fahrudin 4 , H Kaneko 1 , J Noguchi 1 , M Nakai 1 , M Ozawa 1 , T Somfai 1 , LV Nguyen 1,5 , J Ito 2 and N Kashiwazaki 2

1 Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan; 2 Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan; 3 National Institute of Livestock and Grassland Science, National Agricultural Research Organization, Tsukuba, Ibaraki, Japan; 4 Department of Anatomy, Physiology and Pharmacology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia; 5 Institute of Biotechnology, Vietnamese Academy of Science and Technology, Hanoi, Vietnam

Author’s address (for correspondence): Kazuhiro Kikuchi, Division of Animal Sciences, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan. E-mail: kiku@affrc.go.jp

*Present address: Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan.

Copyright Journal compilation © 2009 Blackwell Verlag

Abstract

The objective of the present study was to establish a method for nuclear replacement in metaphase-II (M-II) stage porcine oocytes. Karyoplasts containing M-II chromosomes (K) and cytoplasts without chromosomes (C) were produced from in vitro-matured oocytes by a serial centrifugation method. The oocytes were then reconstructed by fusion of one karyoplast with 1, 2, 3 or 4 cytoplasts (K + 1C, K + 2C, K + 3C and K + 4C, respectively). Reconstructed oocytes, karyoplasts without fusion of any cytoplast (K) and zona-free M-II oocytes (control) were used for experiments. The rates of female pronucleus formation after parthenogenetic activation in all groups of reconstructed oocytes (58.2–77.4%) were not different from those of the K and control groups (58.2% and 66.0%, respectively). In vitro fertilization was carried out to assay the fertilization status (penetration and male pronuclear formation rates) of the oocytes. The cytoplast : karyoplast ratio did not affect the fertilization status (penetration and male pronuclear formation rates) of the oocytes. A significantly high monospermy rate was found in K oocytes (p < 0.05, 61.6%) compared with the other groups (18.2–32.8%). Blastocyst formation rates increased significantly as the number of the cytoplasts fused with karyoplasts increased (p < 0.05, 0.0–15.3%). The blastocyst rate in the K + 4C group (15.3%) was comparable with that of the control (17.8%). Total cell numbers in both the K + 3C and K + 4C groups (16.0 and 15.3 cells, respectively) were comparable with that of the control (26.2 cells). Our results demonstrate that a serial centrifugation and fusion (Centri-Fusion) is an effective method for producing M-II chromosome transferred oocytes with normal fertilization ability and in vitro development. It is suggested that the number of cytoplasts fused with a karyoplast plays a critical role in embryonic development.

http://www3.interscience.wiley.com/journal/121633891/abstract