Catechin-3-\textit{O}-rhamnoside chain extender units in polymeric procyanidins from mangrove bark

Suminar Achmadi, Gustini Syahdirin, Elvin T. Choonga, b and Richard W. Hemingwaya, b

aSchool of Forestry, Wildlife, and Fisheries, Louisiana State University, Baton Rouge, LA 70803, U.S.A.

bSouthern Forest Experiment Station, USDA Forest Service, Pineville, LA 71360, U.S.A.

Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia

Abstract

Acid-catalysed cleavage of ‘purified’ condensed tannin isolates from \textit{Bruguiera gymnorrhiza} (tancang) bark in the presence of phloroglucinol as a capture nucleophile gave, in addition to the expected procyanidin- and prodelphinidin-phloroglucinol adducts, 3-\textit{O}-\textit{a}-l-rhamnopyranosyl-(+)-catechin-(4\textalpha{}\rightarrow{}2)-phloroglucinol, thus providing evidence for covalently bonded glycoside moieties in the chain extender units of mangrove bark tannins.

Keywords: \textit{Bruguiera gymnorrhiza}; Rhizophoraceae; mangrove; bark; condensed tannins; proanthocyanidins; 3-\textit{O}-\textit{a}-l-rhamnopyranosyl-(+)-catechin-(4\textalpha{}\rightarrow{}2)-phloroglucinol; flavan-3-ol glycosides.